[TOC]
<!-- Appendix: Data Compression -->
# 附录:数据压缩
Java I/O 类库提供了可以读写压缩格式流的类。你可以将其他 I/O 类包装起来用于提供压缩功能。
这些类不是从 **Reader** 和 **Writer** 类派生的,而是 **InputStream** 和 **OutputStream** 层级结构的一部分。这是由于压缩库处理的是字节,而不是字符。但是,你可能会被迫混合使用两种类型的流(请记住,你可以使用 **InputStreamReader** 和 **OutputStreamWriter**,这两个类可以在字节类型和字符类型之间轻松转换)。
| 压缩类 | 功能 |
| ------------------------ | ------------------------------------------------------------ |
| **CheckedInputStream** | `getCheckSum()` 可以对任意 **InputStream** 计算校验和(而不只是解压) |
| **CheckedOutputStream** | `getCheckSum()` 可以对任意 **OutputStream** 计算校验和(而不只是压缩) |
| **DeflaterOutputStream** | 压缩类的基类 |
| **ZipOutputStream** | **DeflaterOutputStream** 类的一种,用于压缩数据到 Zip 文件结构 |
| **GZIPOutputStream** | **DeflaterOutputStream** 类的一种,用于压缩数据到 GZIP 文件结构 |
| **InflaterInputStream** | 解压类的基类 |
| **ZipInputStream** | **InflaterInputStream** 类的一种,用于解压 Zip 文件结构的数据 |
| **GZIPInputStream** | **InflaterInputStream** 类的一种,用于解压 GZIP 文件结构的数据 |
尽管存在很多压缩算法,但是 Zip 和 GZIP 可能是最常见的。你可以使用许多用于读取和写入这些格式的工具,来轻松操作压缩数据。
<!-- Simple Compression with GZIP -->
## 使用 Gzip 简单压缩
<!-- Multifile Storage with Zip -->
GZIP 接口十分简单,因此当你有一个需要压缩的数据流(而不是一个包含不同数据分片的容器)时,使用 GZIP 更为合适。如下是一个压缩单个文件的示例:
```java
// compression/GZIPcompress.java
// (c)2017 MindView LLC: see Copyright.txt
// We make no guarantees that this code is fit for any purpose.
// Visit http://OnJava8.com for more book information.
// {java GZIPcompress GZIPcompress.java}
// {VisuallyInspectOutput}
public class GZIPcompress {
public static void main(String[] args) {
if (args.length == 0) {
System.out.println(
"Usage: \nGZIPcompress file\n" +
"\tUses GZIP compression to compress " +
"the file to test.gz");
System.exit(1);
}
try (
InputStream in = new BufferedInputStream(
new FileInputStream(args[0]));
BufferedOutputStream out =
new BufferedOutputStream(
new GZIPOutputStream(
new FileOutputStream("test.gz")))
) {
System.out.println("Writing file");
int c;
while ((c = in.read()) != -1)
out.write(c);
} catch (IOException e) {
throw new RuntimeException(e);
}
System.out.println("Reading file");
try (
BufferedReader in2 = new BufferedReader(
new InputStreamReader(new GZIPInputStream(
new FileInputStream("test.gz"))))
) {
in2.lines().forEach(System.out::println);
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
```
使用压缩类非常简单,你只需要把你的输出流包装在 **GZIPOutputStream** 或 **ZipOutputStream** 中,将输入流包装在 **GZIPInputStream** 或 **ZipInputStream**。其他的一切就只是普通的 I/O 读写。这是面向字符流和面向字节流的混合示例;in 使用 Reader 类,而 **GZIPOutputStreams** 构造函数只能接受 **OutputStream** 对象,而不能接受 **Writer** 对象。当打开文件的时候,**GZIPInputStream** 会转换成为 **Reader**。
## 使用 zip 多文件存储
支持 Zip 格式的库比 GZIP 库更广泛。有了它,你可以轻松存储多个文件,甚至还有一个单独的类可以轻松地读取 Zip 文件。该库使用标准 Zip 格式,因此它可以与当前可在 Internet 上下载的所有 Zip 工具无缝协作。以下示例与前一个示例具有相同的形式,但它可以根据需要处理任意数量的命令行参数。此外,它还显示了 **Checksum** 类计算和验证文件的校验和。有两种校验和类型:Adler32(更快)和 CRC32(更慢但更准确)。
```java
// compression/ZipCompress.java
// (c)2017 MindView LLC: see Copyright.txt
// We make no guarantees that this code is fit for any purpose.
// Visit http://OnJava8.com for more book information.
// Uses Zip compression to compress any
// number of files given on the command line
// {java ZipCompress ZipCompress.java}
// {VisuallyInspectOutput}
public class ZipCompress {
public static void main(String[] args) {
try (
FileOutputStream f =
new FileOutputStream("test.zip");
CheckedOutputStream csum =
new CheckedOutputStream(f, new Adler32());
ZipOutputStream zos = new ZipOutputStream(csum);
BufferedOutputStream out =
new BufferedOutputStream(zos)
) {
zos.setComment("A test of Java Zipping");
// No corresponding getComment(), though.
for (String arg : args) {
System.out.println("Writing file " + arg);
try (
InputStream in = new BufferedInputStream(
new FileInputStream(arg))
) {
zos.putNextEntry(new ZipEntry(arg));
int c;
while ((c = in.read()) != -1)
out.write(c);
}
out.flush();
}
// Checksum valid only after the file is closed!
System.out.println(
"Checksum: " + csum.getChecksum().getValue());
} catch (IOException e) {
throw new RuntimeException(e);
}
// Now extract the files:
System.out.println("Reading file");
try (
FileInputStream fi =
new FileInputStream("test.zip");
CheckedInputStream csumi =
new CheckedInputStream(fi, new Adler32());
ZipInputStream in2 = new ZipInputStream(csumi);
BufferedInputStream bis =
new BufferedInputStream(in2)
) {
ZipEntry ze;
while ((ze = in2.getNextEntry()) != null) {
System.out.println("Reading file " + ze);
int x;
while ((x = bis.read()) != -1)
System.out.write(x);
}
if (args.length == 1)
System.out.println(
"Checksum: " + csumi.getChecksum().getValue());
} catch (IOException e) {
throw new RuntimeException(e);
}
// Alternative way to open and read Zip files:
try (
ZipFile zf = new ZipFile("test.zip")
) {
Enumeration e = zf.entries();
while (e.hasMoreElements()) {
ZipEntry ze2 = (ZipEntry) e.nextElement();
System.out.println("File: " + ze2);
// ... and extract the data as before
}
} catch (IOException e) {
throw new RuntimeException(e);
}
}
}
```
对于要添加到存档的每个文件,必须调用 `putNextEntry()` 并传递 **ZipEntry** 对象。 **ZipEntry** 对象包含一个扩展接口,用于获取和设置 Zip 文件中该特定条目的所有可用数据:名称,压缩和未压缩大小,日期,CRC 校验和,额外字段数据,注释,压缩方法以及它是否是目录条目。但是,即使 Zip 格式有设置密码的方法,Java 的 Zip 库也不支持。虽然 **CheckedInputStream** 和 **CheckedOutputStream** 都支持 Adler32 和 CRC32 校验和,但 **ZipEntry** 类仅支持 CRC 接口。这是对基础 Zip 格式的限制,但它可能会限制你使用更快的 Adler32。
要提取文件,**ZipInputStream** 有一个 `getNextEntry()` 方法,这个方法在有文件存在的情况下调用,会返回下一个 **ZipEntry**。作为一个更简洁的替代方法,你可以使用 **ZipFile** 对象读取该文件,该对象具有方法 entries() 返回一个包裹 **ZipEntries** 的 **Enumeration**。
要读取校验和,你必须以某种方式访问关联的 **Checksum** 对象。这里保留了对 **CheckedOutputStream** 和 **CheckedInputStream** 对象的引用,但你也可以保持对 **Checksum** 对象的引用。 Zip 流中的一个令人困惑的方法是 `setComment()`。如 **ZipCompress** 所示。在 Java 中,你可以在编写文件时设置注释,但是没有办法恢复 **ZipInputStream** 中的注释。注释似乎仅通过 **ZipEntry** 在逐个条目的基础上完全支持。
使用 GZIP 或 Zip 库时,你不仅被限制于文件——你可以压缩任何内容,包括通过网络连接发送的数据。
<!-- Java Archives (Jars) -->
## Java 的 jar
Zip 格式也用于 JAR(Java ARchive)文件格式,这是一种将一组文件收集到单个压缩文件中的方法,就像 Zip 一样。但是,与 Java 中的其他所有内容一样,JAR 文件是跨平台的,因此你不必担心平台问题。你还可以将音频和图像文件像类文件一样包含在其中。
JAR 文件由一个包含压缩文件集合的文件和一个描述它们的“清单(manifest)”组成。(你可以创建自己的清单文件;否则,jar 程序将为你执行此操作。)你可以在 JDK 文档中,找到更多关于 JAR 清单的信息。
JDK 附带的 jar 工具会自动压缩你选择的文件。你可以在命令行上调用它:
```shell
jar [options] destination [manifest] inputfile(s)
```
选项是一组字母(不需要连字符或任何其他指示符)。 Unix / Linux 用户会注意到这些选项与 tar 命令选项的相似性。这些是:
| 选项 | 功能 |
| ---------- | ------------------------------------------------------------ |
| **c** | 创建一个新的或者空的归档文件 |
| **t** | 列出内容目录 |
| **x** | 提取所有文件 |
| **x** file | 提取指定的文件 |
| **f** | 这代表着,“传递文件的名称。”如果你不使用它,jar 假定它的输入将来自标准输入,或者,如果它正在创建一个文件,它的输出将转到标准输出。 |
| **m** | 代表第一个参数是用户创建的清单文件的名称。 |
| **v** | 生成详细的输出用于表述 jar 所作的事情 |
| **0** | 仅存储文件;不压缩文件(用于创建放在类路径中的 JAR 文件)。 |
| **M** | 不要自动创建清单文件 |
如果放入 JAR 文件的文件中包含子目录,则会自动添加该子目录,包括其所有子目录等。还会保留路径信息。
以下是一些调用 jar 的典型方法。以下命令创建名为 myJarFile 的 JAR 文件。 jar 包含当前目录中的所有类文件,以及自动生成的清单文件:
```shell
jar cf myJarFile.jar *.class
```
下一个命令与前面的示例类似,但它添加了一个名为 myManifestFile.mf 的用户创建的清单文件。 :
```shell
jar cmf myJarFile.jar myManifestFile.mf *.class
```
这个命令输出了 myJarFile.jar 中的文件目录:
```shell
jar tf myJarFile.jar
```
如下添加了一个“verbose”的标志,用于生成更多关于 myJarFile.jar 中文件的详细信息:
```shell
jar tvf myJarFile.jar
```
假设 audio,classes 和 image 都是子目录,它将所有子目录组合到文件 myApp.jar 中。还包括“verbose”标志,以便在 jar 程序工作时提供额外的反馈:
```shell
jar cvf myApp.jar audio classes image
```
如果你在创建 JAR 文件时使用了 0(零) 选项,该文件将会被替换在你的类路径(CLASSPATH)中:
```shell
CLASSPATH="lib1.jar;lib2.jar;"
```
然后 Java 可以搜索到 lib1.jar 和 lib2.jar 的类文件。
jar 工具不像 Zip 实用程序那样通用。例如,你无法将文件添加或更新到现有 JAR 文件;只能从头开始创建 JAR 文件。
此外,你无法将文件移动到 JAR 文件中,在移动文件时将其删除。
但是,在一个平台上创建的 JAR 文件可以通过任何其他平台上的 jar 工具透明地读取(这个问题有时会困扰 Zip 实用程序)。
<!-- 分页 -->
<div style="page-break-after: always;"></div>
- 译者的话
- 前言
- 简介
- 第一章 对象的概念
- 抽象
- 接口
- 服务提供
- 封装
- 复用
- 继承
- "是一个"与"像是一个"的关系
- 多态
- 单继承结构
- 集合
- 对象创建与生命周期
- 异常处理
- 本章小结
- 第二章 安装Java和本书用例
- 编辑器
- Shell
- Java安装
- 校验安装
- 安装和运行代码示例
- 第三章 万物皆对象
- 对象操纵
- 对象创建
- 数据存储
- 基本类型的存储
- 高精度数值
- 数组的存储
- 代码注释
- 对象清理
- 作用域
- 对象作用域
- 类的创建
- 类型
- 字段
- 基本类型默认值
- 方法使用
- 返回类型
- 参数列表
- 程序编写
- 命名可见性
- 使用其他组件
- static关键字
- 小试牛刀
- 编译和运行
- 编码风格
- 本章小结
- 第四章 运算符
- 开始使用
- 优先级
- 赋值
- 方法调用中的别名现象
- 算术运算符
- 一元加减运算符
- 递增和递减
- 关系运算符
- 测试对象等价
- 逻辑运算符
- 短路
- 字面值常量
- 下划线
- 指数计数法
- 位运算符
- 移位运算符
- 三元运算符
- 字符串运算符
- 常见陷阱
- 类型转换
- 截断和舍入
- 类型提升
- Java没有sizeof
- 运算符总结
- 本章小结
- 第五章 控制流
- true和false
- if-else
- 迭代语句
- while
- do-while
- for
- 逗号操作符
- for-in 语法
- return
- break 和 continue
- 臭名昭著的 goto
- switch
- switch 字符串
- 本章小结
- 第六章 初始化和清理
- 利用构造器保证初始化
- 方法重载
- 区分重载方法
- 重载与基本类型
- 返回值的重载
- 无参构造器
- this关键字
- 在构造器中调用构造器
- static 的含义
- 垃圾回收器
- finalize()的用途
- 你必须实施清理
- 终结条件
- 垃圾回收器如何工作
- 成员初始化
- 指定初始化
- 构造器初始化
- 初始化的顺序
- 静态数据的初始化
- 显式的静态初始化
- 非静态实例初始化
- 数组初始化
- 动态数组创建
- 可变参数列表
- 枚举类型
- 本章小结
- 第七章 封装
- 包的概念
- 代码组织
- 创建独一无二的包名
- 冲突
- 定制工具库
- 使用 import 改变行为
- 使用包的忠告
- 访问权限修饰符
- 包访问权限
- public: 接口访问权限
- 默认包
- private: 你无法访问
- protected: 继承访问权限
- 包访问权限 Vs Public 构造器
- 接口和实现
- 类访问权限
- 本章小结
- 第八章 复用
- 组合语法
- 继承语法
- 初始化基类
- 带参数的构造函数
- 委托
- 结合组合与继承
- 保证适当的清理
- 名称隐藏
- 组合与继承的选择
- protected
- 向上转型
- 再论组合和继承
- final关键字
- final 数据
- 空白 final
- final 参数
- final 方法
- final 和 private
- final 类
- final 忠告
- 类初始化和加载
- 继承和初始化
- 本章小结
- 第九章 多态
- 向上转型回顾
- 忘掉对象类型
- 转机
- 方法调用绑定
- 产生正确的行为
- 可扩展性
- 陷阱:“重写”私有方法
- 陷阱:属性与静态方法
- 构造器和多态
- 构造器调用顺序
- 继承和清理
- 构造器内部多态方法的行为
- 协变返回类型
- 使用继承设计
- 替代 vs 扩展
- 向下转型与运行时类型信息
- 本章小结
- 第十章 接口
- 抽象类和方法
- 接口创建
- 默认方法
- 多继承
- 接口中的静态方法
- Instrument 作为接口
- 抽象类和接口
- 完全解耦
- 多接口结合
- 使用继承扩展接口
- 结合接口时的命名冲突
- 接口适配
- 接口字段
- 初始化接口中的字段
- 接口嵌套
- 接口和工厂方法模式
- 本章小结
- 第十一章 内部类
- 创建内部类
- 链接外部类
- 使用 .this 和 .new
- 内部类与向上转型
- 内部类方法和作用域
- 匿名内部类
- 嵌套类
- 接口内部的类
- 从多层嵌套类中访问外部类的成员
- 为什么需要内部类
- 闭包与回调
- 内部类与控制框架
- 继承内部类
- 内部类可以被覆盖么?
- 局部内部类
- 内部类标识符
- 本章小结
- 第十二章 集合
- 泛型和类型安全的集合
- 基本概念
- 添加元素组
- 集合的打印
- 迭代器Iterators
- ListIterator
- 链表LinkedList
- 堆栈Stack
- 集合Set
- 映射Map
- 队列Queue
- 优先级队列PriorityQueue
- 集合与迭代器
- for-in和迭代器
- 适配器方法惯用法
- 本章小结
- 简单集合分类
- 第十三章 函数式编程
- 新旧对比
- Lambda表达式
- 递归
- 方法引用
- Runnable接口
- 未绑定的方法引用
- 构造函数引用
- 函数式接口
- 多参数函数式接口
- 缺少基本类型的函数
- 高阶函数
- 闭包
- 作为闭包的内部类
- 函数组合
- 柯里化和部分求值
- 纯函数式编程
- 本章小结
- 第十四章 流式编程
- 流支持
- 流创建
- 随机数流
- int 类型的范围
- generate()
- iterate()
- 流的建造者模式
- Arrays
- 正则表达式
- 中间操作
- 跟踪和调试
- 流元素排序
- 移除元素
- 应用函数到元素
- 在map()中组合流
- Optional类
- 便利函数
- 创建 Optional
- Optional 对象操作
- Optional 流
- 终端操作
- 数组
- 集合
- 组合
- 匹配
- 查找
- 信息
- 数字流信息
- 本章小结
- 第十五章 异常
- 异常概念
- 基本异常
- 异常参数
- 异常捕获
- try 语句块
- 异常处理程序
- 终止与恢复
- 自定义异常
- 异常与记录日志
- 异常声明
- 捕获所有异常
- 多重捕获
- 栈轨迹
- 重新抛出异常
- 精准的重新抛出异常
- 异常链
- Java 标准异常
- 特例:RuntimeException
- 使用 finally 进行清理
- finally 用来做什么?
- 在 return 中使用 finally
- 缺憾:异常丢失
- 异常限制
- 构造器
- Try-With-Resources 用法
- 揭示细节
- 异常匹配
- 其他可选方式
- 历史
- 观点
- 把异常传递给控制台
- 把“被检查的异常”转换为“不检查的异常”
- 异常指南
- 本章小结
- 后记:Exception Bizarro World
- 第十六章 代码校验
- 测试
- 如果没有测试过,它就是不能工作的
- 单元测试
- JUnit
- 测试覆盖率的幻觉
- 前置条件
- 断言(Assertions)
- Java 断言语法
- Guava断言
- 使用断言进行契约式设计
- 检查指令
- 前置条件
- 后置条件
- 不变性
- 放松 DbC 检查或非严格的 DbC
- DbC + 单元测试
- 使用Guava前置条件
- 测试驱动开发
- 测试驱动 vs. 测试优先
- 日志
- 日志会给出正在运行的程序的各种信息
- 日志等级
- 调试
- 使用 JDB 调试
- 图形化调试器
- 基准测试
- 微基准测试
- JMH 的引入
- 剖析和优化
- 优化准则
- 风格检测
- 静态错误分析
- 代码重审
- 结对编程
- 重构
- 重构基石
- 持续集成
- 本章小结
- 第十七章 文件
- 文件和目录路径
- 选取路径部分片段
- 路径分析
- Paths的增减修改
- 目录
- 文件系统
- 路径监听
- 文件查找
- 文件读写
- 本章小结
- 第十八章 字符串
- 字符串的不可变
- +的重载与StringBuilder
- 意外递归
- 字符串操作
- 格式化输出
- printf()
- System.out.format()
- Formatter类
- 格式化修饰符
- Formatter转换
- String.format()
- 一个十六进制转储(dump)工具
- 正则表达式
- 基础
- 创建正则表达式
- 量词
- CharSequence
- Pattern和Matcher
- find()
- 组(Groups)
- start()和end()
- Pattern标记
- split()
- 替换操作
- 正则表达式与 Java I/O
- 扫描输入
- Scanner分隔符
- 用正则表达式扫描
- StringTokenizer类
- 本章小结
- 第十九章 类型信息
- 为什么需要 RTTI
- Class对象
- 类字面常量
- 泛化的Class引用
- cast()方法
- 类型转换检测
- 使用类字面量
- 递归计数
- 一个动态instanceof函数
- 注册工厂
- 类的等价比较
- 反射:运行时类信息
- 类方法提取器
- 动态代理
- Optional类
- 标记接口
- Mock 对象和桩
- 接口和类型
- 本章小结
- 第二十章 泛型
- 简单泛型
- 泛型接口
- 泛型方法
- 复杂模型构建
- 泛型擦除
- 补偿擦除
- 边界
- 通配符
- 问题
- 自限定的类型
- 动态类型安全
- 泛型异常
- 混型
- 潜在类型机制
- 对缺乏潜在类型机制的补偿
- Java8 中的辅助潜在类型
- 总结:类型转换真的如此之糟吗?
- 进阶阅读
- 第二十一章 数组
- 数组特性
- 一等对象
- 返回数组
- 多维数组
- 泛型数组
- Arrays的fill方法
- Arrays的setAll方法
- 增量生成
- 随机生成
- 泛型和基本数组
- 数组元素修改
- 数组并行
- Arrays工具类
- 数组比较
- 数组拷贝
- 流和数组
- 数组排序
- Arrays.sort()的使用
- 并行排序
- binarySearch二分查找
- parallelPrefix并行前缀
- 本章小结
- 第二十二章 枚举
- 基本 enum 特性
- 将静态类型导入用于 enum
- 方法添加
- 覆盖 enum 的方法
- switch 语句中的 enum
- values 方法的神秘之处
- 实现而非继承
- 随机选择
- 使用接口组织枚举
- 使用 EnumSet 替代 Flags
- 使用 EnumMap
- 常量特定方法
- 使用 enum 的职责链
- 使用 enum 的状态机
- 多路分发
- 使用 enum 分发
- 使用常量相关的方法
- 使用 EnumMap 进行分发
- 使用二维数组
- 本章小结
- 第二十三章 注解
- 基本语法
- 定义注解
- 元注解
- 编写注解处理器
- 注解元素
- 默认值限制
- 替代方案
- 注解不支持继承
- 实现处理器
- 使用javac处理注解
- 最简单的处理器
- 更复杂的处理器
- 基于注解的单元测试
- 在 @Unit 中使用泛型
- 实现 @Unit
- 本章小结
- 第二十四章 并发编程
- 术语问题
- 并发的新定义
- 并发的超能力
- 并发为速度而生
- 四句格言
- 1.不要这样做
- 2.没有什么是真的,一切可能都有问题
- 3.它起作用,并不意味着它没有问题
- 4.你必须仍然理解
- 残酷的真相
- 本章其余部分
- 并行流
- 创建和运行任务
- 终止耗时任务
- CompletableFuture类
- 基本用法
- 结合 CompletableFuture
- 模拟
- 异常
- 流异常(Stream Exception)
- 检查性异常
- 死锁
- 构造方法非线程安全
- 复杂性和代价
- 本章小结
- 缺点
- 共享内存陷阱
- This Albatross is Big
- 其他类库
- 考虑为并发设计的语言
- 拓展阅读
- 第二十五章 设计模式
- 概念
- 单例模式
- 模式分类
- 构建应用程序框架
- 面向实现
- 工厂模式
- 动态工厂
- 多态工厂
- 抽象工厂
- 函数对象
- 命令模式
- 策略模式
- 责任链模式
- 改变接口
- 适配器模式(Adapter)
- 外观模式(Façade)
- 包(Package)作为外观模式的变体
- 解释器:运行时的弹性
- 回调
- 多次调度
- 模式重构
- 抽象用法
- 多次派遣
- 访问者模式
- RTTI的优劣
- 本章小结
- 附录:补充
- 附录:编程指南
- 附录:文档注释
- 附录:对象传递和返回
- 附录:流式IO
- 输入流类型
- 输出流类型
- 添加属性和有用的接口
- 通过FilterInputStream 从 InputStream 读取
- 通过 FilterOutputStream 向 OutputStream 写入
- Reader和Writer
- 数据的来源和去处
- 更改流的行为
- 未发生改变的类
- RandomAccessFile类
- IO流典型用途
- 缓冲输入文件
- 从内存输入
- 格式化内存输入
- 基本文件的输出
- 文本文件输出快捷方式
- 存储和恢复数据
- 读写随机访问文件
- 本章小结
- 附录:标准IO
- 附录:新IO
- ByteBuffer
- 数据转换
- 基本类型获取
- 视图缓冲区
- 字节存储次序
- 缓冲区数据操作
- 缓冲区细节
- 内存映射文件
- 性能
- 文件锁定
- 映射文件的部分锁定
- 附录:理解equals和hashCode方法
- 附录:集合主题
- 附录:并发底层原理
- 附录:数据压缩
- 附录:对象序列化
- 附录:静态语言类型检查
- 附录:C++和Java的优良传统
- 附录:成为一名程序员