## [测试驱动开发](https://lingcoder.gitee.io/onjava8/#/book/16-Validating-Your-Code?id=%e6%b5%8b%e8%af%95%e9%a9%b1%e5%8a%a8%e5%bc%80%e5%8f%91)
之所以可以有测试驱动开发(TDD)这种开发方式,是因为如果你在设计和编写代码时考虑到了测试,那么你不仅可以写出可测试性更好的代码,而且还可以得到更好的代码设计。 一般情况下这个说法都是正确的。 一旦我想到“我将如何测试我的代码?”,这个想法将使我的代码产生变化,并且往往是从“可测试”转变为“可用”。
纯粹的 TDD 主义者会在实现新功能之前就为其编写测试,这称为测试优先的开发。 我们采用一个简易的示例程序来进行说明,它的功能是反转**String**中字符的大小写。 让我们随意添加一些约束:**String**必须小于或等于30个字符,并且必须只包含字母,空格,逗号和句号(英文)。
此示例与标准 TDD 不同,因为它的作用在于接收**StringInverter**的不同实现,以便在我们逐步满足测试的过程中来体现类的演变。 为了满足这个要求,将**StringInverter**作为接口:
~~~
// validating/StringInverter.java
package validating;
interface StringInverter {
String invert(String str);
}
~~~
现在我们通过可以编写测试来表述我们的要求。 以下所述通常不是你编写测试的方式,但由于我们在此处有一个特殊的约束:我们要对 \*\*StringInverter \*\*多个版本的实现进行测试,为此,我们利用了 JUnit5 中最复杂的新功能之一:动态测试生成。 顾名思义,通过它你可以使你所编写的代码在运行时生成测试,而不需要你对每个测试显式编码。 这带来了许多新的可能性,特别是在明确地需要编写一整套测试而令人望而却步的情况下。
JUnit5 提供了几种动态生成测试的方法,但这里使用的方法可能是最复杂的。 \*\*DynamicTest.stream() \*\*方法采用了:
* 对象集合上的迭代器 (versions) ,这个迭代器在不同组的测试中是不同的。 迭代器生成的对象可以是任何类型,但是只能有一种对象生成,因此对于存在多个不同的对象类型时,必须人为地将它们打包成单个类型。
* **Function**,它从迭代器获取对象并生成描述测试的**String**。
* **Consumer**,它从迭代器获取对象并包含基于该对象的测试代码。
在此示例中,所有代码将在**testVersions()**中进行组合以防止代码重复。 迭代器生成的对象是对**DynamicTest**的不同实现,这些对象体现了对接口不同版本的实现:
~~~
// validating/tests/DynamicStringInverterTests.java
package validating;
import java.util.*;
import java.util.function.*;
import java.util.stream.*;
import org.junit.jupiter.api.*;
import static org.junit.jupiter.api.Assertions.*;
import static org.junit.jupiter.api.DynamicTest.*;
class DynamicStringInverterTests {
// Combine operations to prevent code duplication:
Stream<DynamicTest> testVersions(String id,
Function<StringInverter, String> test) {
List<StringInverter> versions = Arrays.asList(
new Inverter1(), new Inverter2(),
new Inverter3(), new Inverter4());
return DynamicTest.stream(
versions.iterator(),
inverter -> inverter.getClass().getSimpleName(),
inverter -> {
System.out.println(
inverter.getClass().getSimpleName() +
": " + id);
try {
if(test.apply(inverter) != "fail")
System.out.println("Success");
} catch(Exception | Error e) {
System.out.println(
"Exception: " + e.getMessage());
}
}
);
}
String isEqual(String lval, String rval) {
if(lval.equals(rval))
return "success";
System.out.println("FAIL: " + lval + " != " + rval);
return "fail";
}
@BeforeAll
static void startMsg() {
System.out.println(
">>> Starting DynamicStringInverterTests <<<");
}
@AfterAll
static void endMsg() {
System.out.println(
">>> Finished DynamicStringInverterTests <<<");
}
@TestFactory
Stream<DynamicTest> basicInversion1() {
String in = "Exit, Pursued by a Bear.";
String out = "eXIT, pURSUED BY A bEAR.";
return testVersions(
"Basic inversion (should succeed)",
inverter -> isEqual(inverter.invert(in), out)
);
}
@TestFactory
Stream<DynamicTest> basicInversion2() {
return testVersions(
"Basic inversion (should fail)",
inverter -> isEqual(inverter.invert("X"), "X"));
}
@TestFactory
Stream<DynamicTest> disallowedCharacters() {
String disallowed = ";-_()*&^%$#@!~`0123456789";
return testVersions(
"Disallowed characters",
inverter -> {
String result = disallowed.chars()
.mapToObj(c -> {
String cc = Character.toString((char)c);
try {
inverter.invert(cc);
return "";
} catch(RuntimeException e) {
return cc;
}
}).collect(Collectors.joining(""));
if(result.length() == 0)
return "success";
System.out.println("Bad characters: " + result);
return "fail";
}
);
}
@TestFactory
Stream<DynamicTest> allowedCharacters() {
String lowcase = "abcdefghijklmnopqrstuvwxyz ,.";
String upcase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ ,.";
return testVersions(
"Allowed characters (should succeed)",
inverter -> {
assertEquals(inverter.invert(lowcase), upcase);
assertEquals(inverter.invert(upcase), lowcase);
return "success";
}
);
}
@TestFactory
Stream<DynamicTest> lengthNoGreaterThan30() {
String str = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx";
assertTrue(str.length() > 30);
return testVersions(
"Length must be less than 31 (throws exception)",
inverter -> inverter.invert(str)
);
}
@TestFactory
Stream<DynamicTest> lengthLessThan31() {
String str = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx";
assertTrue(str.length() < 31);
return testVersions(
"Length must be less than 31 (should succeed)",
inverter -> inverter.invert(str)
);
}
}
~~~
在一般的测试中,你可能认为在进行一个结果为失败的测试时应该停止代码构建。 但是在这里,我们只希望系统报告问题,但仍然继续运行,以便你可以看到不同版本的**StringInverter**的效果。
每个使用**@TestFactory**注释的方法都会生成一个**DynamicTest**对象的**Stream**(通过**testVersions()**),每个 JUnit 都像常规的**@Test**方法一样执行。
现在测试都已经准备好了,我们就可以开始实现 \*\*StringInverter \*\*了。 我们从一个仅返回其参数的假的实现类开始:
~~~
// validating/Inverter1.java
package validating;
public class Inverter1 implements StringInverter {
public String invert(String str) { return str; }
}
~~~
接下来我们实现反转操作:
~~~
// validating/Inverter2.java
package validating;
import static java.lang.Character.*;
public class Inverter2 implements StringInverter {
public String invert(String str) {
String result = "";
for(int i = 0; i < str.length(); i++) {
char c = str.charAt(i);
result += isUpperCase(c) ?
toLowerCase(c) :
toUpperCase(c);
}
return result;
}
}
~~~
现在添加代码以确保输入不超过30个字符:
~~~
// validating/Inverter3.java
package validating;
import static java.lang.Character.*;
public class Inverter3 implements StringInverter {
public String invert(String str) {
if(str.length() > 30)
throw new RuntimeException("argument too long!");
String result = "";
for(int i = 0; i < str.length(); i++) {
char c = str.charAt(i);
result += isUpperCase(c) ?
toLowerCase(c) :
toUpperCase(c);
}
return result;
}
}
~~~
最后,我们排除了不允许的字符:
~~~
// validating/Inverter4.java
package validating;
import static java.lang.Character.*;
public class Inverter4 implements StringInverter {
static final String ALLOWED =
"abcdefghijklmnopqrstuvwxyz ,." +
"ABCDEFGHIJKLMNOPQRSTUVWXYZ";
public String invert(String str) {
if(str.length() > 30)
throw new RuntimeException("argument too long!");
String result = "";
for(int i = 0; i < str.length(); i++) {
char c = str.charAt(i);
if(ALLOWED.indexOf(c) == -1)
throw new RuntimeException(c + " Not allowed");
result += isUpperCase(c) ?
toLowerCase(c) :
toUpperCase(c);
}
return result;
}
}
~~~
你将从测试输出中看到,每个版本的**Inverter**都几乎能通过所有测试。 当你在进行测试优先的开发时会有相同的体验。
**DynamicStringInverterTests.java**仅是为了显示 TDD 过程中不同**StringInverter**实现的开发。 通常,你只需编写一组如下所示的测试,并修改单个**StringInverter**类直到它满足所有测试:
~~~
// validating/tests/StringInverterTests.java
package validating;
import java.util.*;
import java.util.stream.*;
import org.junit.jupiter.api.*;
import static org.junit.jupiter.api.Assertions.*;
public class StringInverterTests {
StringInverter inverter = new Inverter4();
@BeforeAll
static void startMsg() {
System.out.println(">>> StringInverterTests <<<");
}
@Test
void basicInversion1() {
String in = "Exit, Pursued by a Bear.";
String out = "eXIT, pURSUED BY A bEAR.";
assertEquals(inverter.invert(in), out);
}
@Test
void basicInversion2() {
expectThrows(Error.class, () -> {
assertEquals(inverter.invert("X"), "X");
});
}
@Test
void disallowedCharacters() {
String disallowed = ";-_()*&^%$#@!~`0123456789";
String result = disallowed.chars()
.mapToObj(c -> {
String cc = Character.toString((char)c);
try {
inverter.invert(cc);
return "";
} catch(RuntimeException e) {
return cc;
}
}).collect(Collectors.joining(""));
assertEquals(result, disallowed);
}
@Test
void allowedCharacters() {
String lowcase = "abcdefghijklmnopqrstuvwxyz ,.";
String upcase = "ABCDEFGHIJKLMNOPQRSTUVWXYZ ,.";
assertEquals(inverter.invert(lowcase), upcase);
assertEquals(inverter.invert(upcase), lowcase);
}
@Test
void lengthNoGreaterThan30() {
String str = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx";
assertTrue(str.length() > 30);
expectThrows(RuntimeException.class, () -> {
inverter.invert(str);
});
}
@Test
void lengthLessThan31() {
String str = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx";
assertTrue(str.length() < 31);
inverter.invert(str);
}
}
~~~
你可以通过这种方式进行开发:一开始在测试中建立你期望程序应有的所有特性,然后你就能在实现中一步步添加功能,直到所有测试通过。 完成后,你还可以在将来通过这些测试来得知(或让其他任何人得知)当修复错误或添加功能时,代码是否被破坏了。 TDD的目标是产生更好,更周全的测试,因为在完全实现之后尝试实现完整的测试覆盖通常会产生匆忙或无意义的测试。
- 译者的话
- 前言
- 简介
- 第一章 对象的概念
- 抽象
- 接口
- 服务提供
- 封装
- 复用
- 继承
- "是一个"与"像是一个"的关系
- 多态
- 单继承结构
- 集合
- 对象创建与生命周期
- 异常处理
- 本章小结
- 第二章 安装Java和本书用例
- 编辑器
- Shell
- Java安装
- 校验安装
- 安装和运行代码示例
- 第三章 万物皆对象
- 对象操纵
- 对象创建
- 数据存储
- 基本类型的存储
- 高精度数值
- 数组的存储
- 代码注释
- 对象清理
- 作用域
- 对象作用域
- 类的创建
- 类型
- 字段
- 基本类型默认值
- 方法使用
- 返回类型
- 参数列表
- 程序编写
- 命名可见性
- 使用其他组件
- static关键字
- 小试牛刀
- 编译和运行
- 编码风格
- 本章小结
- 第四章 运算符
- 开始使用
- 优先级
- 赋值
- 方法调用中的别名现象
- 算术运算符
- 一元加减运算符
- 递增和递减
- 关系运算符
- 测试对象等价
- 逻辑运算符
- 短路
- 字面值常量
- 下划线
- 指数计数法
- 位运算符
- 移位运算符
- 三元运算符
- 字符串运算符
- 常见陷阱
- 类型转换
- 截断和舍入
- 类型提升
- Java没有sizeof
- 运算符总结
- 本章小结
- 第五章 控制流
- true和false
- if-else
- 迭代语句
- while
- do-while
- for
- 逗号操作符
- for-in 语法
- return
- break 和 continue
- 臭名昭著的 goto
- switch
- switch 字符串
- 本章小结
- 第六章 初始化和清理
- 利用构造器保证初始化
- 方法重载
- 区分重载方法
- 重载与基本类型
- 返回值的重载
- 无参构造器
- this关键字
- 在构造器中调用构造器
- static 的含义
- 垃圾回收器
- finalize()的用途
- 你必须实施清理
- 终结条件
- 垃圾回收器如何工作
- 成员初始化
- 指定初始化
- 构造器初始化
- 初始化的顺序
- 静态数据的初始化
- 显式的静态初始化
- 非静态实例初始化
- 数组初始化
- 动态数组创建
- 可变参数列表
- 枚举类型
- 本章小结
- 第七章 封装
- 包的概念
- 代码组织
- 创建独一无二的包名
- 冲突
- 定制工具库
- 使用 import 改变行为
- 使用包的忠告
- 访问权限修饰符
- 包访问权限
- public: 接口访问权限
- 默认包
- private: 你无法访问
- protected: 继承访问权限
- 包访问权限 Vs Public 构造器
- 接口和实现
- 类访问权限
- 本章小结
- 第八章 复用
- 组合语法
- 继承语法
- 初始化基类
- 带参数的构造函数
- 委托
- 结合组合与继承
- 保证适当的清理
- 名称隐藏
- 组合与继承的选择
- protected
- 向上转型
- 再论组合和继承
- final关键字
- final 数据
- 空白 final
- final 参数
- final 方法
- final 和 private
- final 类
- final 忠告
- 类初始化和加载
- 继承和初始化
- 本章小结
- 第九章 多态
- 向上转型回顾
- 忘掉对象类型
- 转机
- 方法调用绑定
- 产生正确的行为
- 可扩展性
- 陷阱:“重写”私有方法
- 陷阱:属性与静态方法
- 构造器和多态
- 构造器调用顺序
- 继承和清理
- 构造器内部多态方法的行为
- 协变返回类型
- 使用继承设计
- 替代 vs 扩展
- 向下转型与运行时类型信息
- 本章小结
- 第十章 接口
- 抽象类和方法
- 接口创建
- 默认方法
- 多继承
- 接口中的静态方法
- Instrument 作为接口
- 抽象类和接口
- 完全解耦
- 多接口结合
- 使用继承扩展接口
- 结合接口时的命名冲突
- 接口适配
- 接口字段
- 初始化接口中的字段
- 接口嵌套
- 接口和工厂方法模式
- 本章小结
- 第十一章 内部类
- 创建内部类
- 链接外部类
- 使用 .this 和 .new
- 内部类与向上转型
- 内部类方法和作用域
- 匿名内部类
- 嵌套类
- 接口内部的类
- 从多层嵌套类中访问外部类的成员
- 为什么需要内部类
- 闭包与回调
- 内部类与控制框架
- 继承内部类
- 内部类可以被覆盖么?
- 局部内部类
- 内部类标识符
- 本章小结
- 第十二章 集合
- 泛型和类型安全的集合
- 基本概念
- 添加元素组
- 集合的打印
- 迭代器Iterators
- ListIterator
- 链表LinkedList
- 堆栈Stack
- 集合Set
- 映射Map
- 队列Queue
- 优先级队列PriorityQueue
- 集合与迭代器
- for-in和迭代器
- 适配器方法惯用法
- 本章小结
- 简单集合分类
- 第十三章 函数式编程
- 新旧对比
- Lambda表达式
- 递归
- 方法引用
- Runnable接口
- 未绑定的方法引用
- 构造函数引用
- 函数式接口
- 多参数函数式接口
- 缺少基本类型的函数
- 高阶函数
- 闭包
- 作为闭包的内部类
- 函数组合
- 柯里化和部分求值
- 纯函数式编程
- 本章小结
- 第十四章 流式编程
- 流支持
- 流创建
- 随机数流
- int 类型的范围
- generate()
- iterate()
- 流的建造者模式
- Arrays
- 正则表达式
- 中间操作
- 跟踪和调试
- 流元素排序
- 移除元素
- 应用函数到元素
- 在map()中组合流
- Optional类
- 便利函数
- 创建 Optional
- Optional 对象操作
- Optional 流
- 终端操作
- 数组
- 集合
- 组合
- 匹配
- 查找
- 信息
- 数字流信息
- 本章小结
- 第十五章 异常
- 异常概念
- 基本异常
- 异常参数
- 异常捕获
- try 语句块
- 异常处理程序
- 终止与恢复
- 自定义异常
- 异常与记录日志
- 异常声明
- 捕获所有异常
- 多重捕获
- 栈轨迹
- 重新抛出异常
- 精准的重新抛出异常
- 异常链
- Java 标准异常
- 特例:RuntimeException
- 使用 finally 进行清理
- finally 用来做什么?
- 在 return 中使用 finally
- 缺憾:异常丢失
- 异常限制
- 构造器
- Try-With-Resources 用法
- 揭示细节
- 异常匹配
- 其他可选方式
- 历史
- 观点
- 把异常传递给控制台
- 把“被检查的异常”转换为“不检查的异常”
- 异常指南
- 本章小结
- 后记:Exception Bizarro World
- 第十六章 代码校验
- 测试
- 如果没有测试过,它就是不能工作的
- 单元测试
- JUnit
- 测试覆盖率的幻觉
- 前置条件
- 断言(Assertions)
- Java 断言语法
- Guava断言
- 使用断言进行契约式设计
- 检查指令
- 前置条件
- 后置条件
- 不变性
- 放松 DbC 检查或非严格的 DbC
- DbC + 单元测试
- 使用Guava前置条件
- 测试驱动开发
- 测试驱动 vs. 测试优先
- 日志
- 日志会给出正在运行的程序的各种信息
- 日志等级
- 调试
- 使用 JDB 调试
- 图形化调试器
- 基准测试
- 微基准测试
- JMH 的引入
- 剖析和优化
- 优化准则
- 风格检测
- 静态错误分析
- 代码重审
- 结对编程
- 重构
- 重构基石
- 持续集成
- 本章小结
- 第十七章 文件
- 文件和目录路径
- 选取路径部分片段
- 路径分析
- Paths的增减修改
- 目录
- 文件系统
- 路径监听
- 文件查找
- 文件读写
- 本章小结
- 第十八章 字符串
- 字符串的不可变
- +的重载与StringBuilder
- 意外递归
- 字符串操作
- 格式化输出
- printf()
- System.out.format()
- Formatter类
- 格式化修饰符
- Formatter转换
- String.format()
- 一个十六进制转储(dump)工具
- 正则表达式
- 基础
- 创建正则表达式
- 量词
- CharSequence
- Pattern和Matcher
- find()
- 组(Groups)
- start()和end()
- Pattern标记
- split()
- 替换操作
- 正则表达式与 Java I/O
- 扫描输入
- Scanner分隔符
- 用正则表达式扫描
- StringTokenizer类
- 本章小结
- 第十九章 类型信息
- 为什么需要 RTTI
- Class对象
- 类字面常量
- 泛化的Class引用
- cast()方法
- 类型转换检测
- 使用类字面量
- 递归计数
- 一个动态instanceof函数
- 注册工厂
- 类的等价比较
- 反射:运行时类信息
- 类方法提取器
- 动态代理
- Optional类
- 标记接口
- Mock 对象和桩
- 接口和类型
- 本章小结
- 第二十章 泛型
- 简单泛型
- 泛型接口
- 泛型方法
- 复杂模型构建
- 泛型擦除
- 补偿擦除
- 边界
- 通配符
- 问题
- 自限定的类型
- 动态类型安全
- 泛型异常
- 混型
- 潜在类型机制
- 对缺乏潜在类型机制的补偿
- Java8 中的辅助潜在类型
- 总结:类型转换真的如此之糟吗?
- 进阶阅读
- 第二十一章 数组
- 数组特性
- 一等对象
- 返回数组
- 多维数组
- 泛型数组
- Arrays的fill方法
- Arrays的setAll方法
- 增量生成
- 随机生成
- 泛型和基本数组
- 数组元素修改
- 数组并行
- Arrays工具类
- 数组比较
- 数组拷贝
- 流和数组
- 数组排序
- Arrays.sort()的使用
- 并行排序
- binarySearch二分查找
- parallelPrefix并行前缀
- 本章小结
- 第二十二章 枚举
- 基本 enum 特性
- 将静态类型导入用于 enum
- 方法添加
- 覆盖 enum 的方法
- switch 语句中的 enum
- values 方法的神秘之处
- 实现而非继承
- 随机选择
- 使用接口组织枚举
- 使用 EnumSet 替代 Flags
- 使用 EnumMap
- 常量特定方法
- 使用 enum 的职责链
- 使用 enum 的状态机
- 多路分发
- 使用 enum 分发
- 使用常量相关的方法
- 使用 EnumMap 进行分发
- 使用二维数组
- 本章小结
- 第二十三章 注解
- 基本语法
- 定义注解
- 元注解
- 编写注解处理器
- 注解元素
- 默认值限制
- 替代方案
- 注解不支持继承
- 实现处理器
- 使用javac处理注解
- 最简单的处理器
- 更复杂的处理器
- 基于注解的单元测试
- 在 @Unit 中使用泛型
- 实现 @Unit
- 本章小结
- 第二十四章 并发编程
- 术语问题
- 并发的新定义
- 并发的超能力
- 并发为速度而生
- 四句格言
- 1.不要这样做
- 2.没有什么是真的,一切可能都有问题
- 3.它起作用,并不意味着它没有问题
- 4.你必须仍然理解
- 残酷的真相
- 本章其余部分
- 并行流
- 创建和运行任务
- 终止耗时任务
- CompletableFuture类
- 基本用法
- 结合 CompletableFuture
- 模拟
- 异常
- 流异常(Stream Exception)
- 检查性异常
- 死锁
- 构造方法非线程安全
- 复杂性和代价
- 本章小结
- 缺点
- 共享内存陷阱
- This Albatross is Big
- 其他类库
- 考虑为并发设计的语言
- 拓展阅读
- 第二十五章 设计模式
- 概念
- 单例模式
- 模式分类
- 构建应用程序框架
- 面向实现
- 工厂模式
- 动态工厂
- 多态工厂
- 抽象工厂
- 函数对象
- 命令模式
- 策略模式
- 责任链模式
- 改变接口
- 适配器模式(Adapter)
- 外观模式(Façade)
- 包(Package)作为外观模式的变体
- 解释器:运行时的弹性
- 回调
- 多次调度
- 模式重构
- 抽象用法
- 多次派遣
- 访问者模式
- RTTI的优劣
- 本章小结
- 附录:补充
- 附录:编程指南
- 附录:文档注释
- 附录:对象传递和返回
- 附录:流式IO
- 输入流类型
- 输出流类型
- 添加属性和有用的接口
- 通过FilterInputStream 从 InputStream 读取
- 通过 FilterOutputStream 向 OutputStream 写入
- Reader和Writer
- 数据的来源和去处
- 更改流的行为
- 未发生改变的类
- RandomAccessFile类
- IO流典型用途
- 缓冲输入文件
- 从内存输入
- 格式化内存输入
- 基本文件的输出
- 文本文件输出快捷方式
- 存储和恢复数据
- 读写随机访问文件
- 本章小结
- 附录:标准IO
- 附录:新IO
- ByteBuffer
- 数据转换
- 基本类型获取
- 视图缓冲区
- 字节存储次序
- 缓冲区数据操作
- 缓冲区细节
- 内存映射文件
- 性能
- 文件锁定
- 映射文件的部分锁定
- 附录:理解equals和hashCode方法
- 附录:集合主题
- 附录:并发底层原理
- 附录:数据压缩
- 附录:对象序列化
- 附录:静态语言类型检查
- 附录:C++和Java的优良传统
- 附录:成为一名程序员