### 3.6.1 几种解题策略
如前所述,对于复杂问题,能够设计出多种多样的算法,并且这些算法各有好坏的不同。
下面我们将对上述最大值问题给出四种解决方法,并讨论每一种策略的好坏。
策略 1:将每个数值与其他两个数值进行比较 由于最大值比其他所有数值都大,所以求最大值的最直接的思路就逐一检查 x1、x2 和x3,看看哪个数值比另外两个数值大。又由于 x1、x2 和 x3 都有可能是最大值,我们可以用 一个三路分支的 if-elif 语句来求解:
```
if x1 >= x2 and x1 >= x3:
max = x1
elif x2 >= x1 and x2 >= x3:
max = x2
else:
max = x3
```
分析一下这条 if 语句,可以看出它用到了两个布尔表达式,而每个布尔表达式又是用 and 联结起来的两个比较运算式,因此可能要经过四次比较运算才能得出最大值。看上去没什么 复杂,但这个算法其实是很不好的。考虑从 4 个数值中求最大值的问题,用这个算法就会需
要 3 个布尔表达式,每个表达式都包含用 and 联结的 3 个比较运算式,可能要经过 9 次比较 运算才能得出最大值。对于 n 很大的情形,这个算法最坏需要(n-1)2 次比较才能得到结果, 效率很差,另外在代码形式上也会很难看(用 and 联结起来的 n-1 个比较运算式的长度远远 超出了屏幕上一行的宽度)。
上述算法的问题在于:对每个数据的检测是独立设计的,一个数据的测试信息不会被后 面的测试利用。例如,假设第一个分支发现 x1 大于 x2 但小于 x3,这时我们能够推知 x3 是 最大值。但是上述代码却完全忽略这个信息,只是进入第二个分支继续检测,直至到第三个 分支才得出 x3 是最大值。
策略 2:判定树
执行比较运算 a>b 后,也许不能得出最大值是哪个数据,但肯定可以推知某个数据不是 最大值。因为若 a 大于 b,则 b 不可能是最大值;否则 a 不可能是最大值。后续的比较测试 可以充分利用这个信息,以避免冗余测试。根据这个思路,我们可以将所有测试安排一个合 理的顺序,以便排在后面的测试能够利用前面测试的信息。判定树方法就是这么一种安排测 试顺序的常用方法。假设我们从测试 x1>=x2 开始,如果这个比较运算结果为真,那么接下 去只需要测试 x1 与 x3 的大小,否则只需要比较 x2 和 x3 的大小。可见,每一次测试都产生 两个分支,每个分支又是一次测试,又产生两个分支。如此继续下去,最终形成一个层次结 构,称为判定树(见图 3.12)。
![](https://box.kancloud.cn/2016-02-22_56cafcde62c2e.png)
图 3.12 判定树
我们很容易根据判定树作出程序的流程图,并进而转化成 if-else 语句:
```
if x1 >= x2:
if x1 >= x3:
max = x1
else:
max = x3
else:
if x2 >= x3:
max = x2
else:
max = x3
```
分析一下图 3.12 中的判定树(或者分析上面的 if 语句也一样)即可发现,为了求得最大 值,只需沿着自顶向下的某一条测试路径走到底即可,而任一路径上的比较运算次数都是两 次。所以,不管三个数值的大小次序是什么,上述算法都只进行两次比较运算,就能得出最 大值。效率与第一种策略要高。但是,这个方法导致的代码结构更加复杂,仍然不适合处理 较大的 n。例如,如果是求 4 个数据中的最大值,就会导致 3 重嵌套的 if-else 语句。
策略 3:顺序处理
前面两种策略都不适合对很多数据求最大值。还有更好的方法吗?
在为一个问题设计算法时,建议读者可以先问问自己:如果是你,你会如何解决该问题。 就此例而言,对于找三个数的最大值问题,你可能不会费脑筋多想,因为只需看看三个数值 就知道最大值了。但是如果交给你一本数据记录,其中有成千上万的数据,而且没有特定顺 序,你又会怎么找出其中的最大值呢?
相信你一定会想出这个简单的策略:从头到尾逐一检查每个数值,心中记住当前见过的 最大值;每当遇到更大的数值,就用它替换心中所记的数值。这样,等到所有数据都检查过 了,最后记在心里的就是最大值。
将这个策略写成计算机算法,只需用一个变量(用 max 就好)来记录当前见过的最大值。 当处理完所有数据,max 中存放的就是全体数据中的最大值。下面的代码是三个数据的版本:
```
max = x1
if x2 > max:
max = x2
if x3 > max:
max = x3
```
分析一下这个顺序处理策略可知,它只需要进行两次比较运算就能得到最大值,这一点和第二种策略一样。但是顺序处理策略的代码比第二种策略简单得多,不需要嵌套的 if 语句。 更重要的是,这个策略是可扩展的,能够推广到任意 n 个数据的情形而不降低效率。例如, 如果有 4 个数据,我们只需增加一行语句:
```
max = x1
if x2 > max:
max = x2
if x3 > max:
max = x3
if x4 > max:
max = x4
```
或者更简洁地用一个循环来表示,那样连数据变量也可以公用,无需使用 4 个独立变量。 将上述算法推广到对任意 n 个数据求最大值的情形,即可得到一般的求最大值的程序。
代码如下:
【程序 3.12】maxn.py
```
n = input("How many numbers? ")
max = input("Input a number: ")
for i in range(n-1):
x = input("Input a number: ")
if x > max:
max = x
print "max =", max
```
不难看出,为了从 n 个数据中求得最大值,这个程序只需要执行 n-1 次比较运算。
策略 4:利用现成代码
最后值得一提的是,Python 其实有一个内建函数 max,其功能就是返回若干个数据中的 最大值。如果使用这个函数,代码就简单到了极致,在交互环境下就能方便地解决问题:
```
>>> x1,x2,x3 = input("Input three numbers: ")
>>> print "max =", max(x1,x2,x3)
```
当然,这简直已称不上是一个算法,对我们学习程序设计没什么帮助。
- 前言
- 第 1 章 计算与计算思维
- 1.1 什么是计算?
- 1.1.1 计算机与计算
- 1.1.2 计算机语言
- 1.1.3 算法
- 1.1.4 实现
- 1.2 什么是计算思维?
- 1.2.1 计算思维的基本原则
- 1.2.2 计算思维的具体例子
- 1.2.3 日常生活中的计算思维
- 1.2.4 计算思维对其他学科的影响
- 1.3 初识 Python
- 1.3.1 Python 简介
- 1.3.2 第一个程序
- 1.3.3 程序的执行方式
- 1.3.4 Python 语言的基本成分
- 1.4 程序排错
- 1.5 练习
- 第 2 章 用数据表示现实世界
- 2.1 数据和数据类型
- 2.1.1 数据是对现实的抽象
- 2.1.1 常量与变量
- 2.1.2 数据类型
- 2.1.3 Python 的动态类型*
- 2.2 数值类型
- 2.2.1 整数类型 int
- 2.2.2 长整数类型 long
- 2.2.3 浮点数类型 float
- 2.2.4 数学库模块 math
- 2.2.5 复数类型 complex*
- 2.3 字符串类型 str
- 2.3.1 字符串类型的字面值形式
- 2.3.2 字符串类型的操作
- 2.3.3 字符的机内表示
- 2.3.4 字符串类型与其他类型的转换
- 2.3.5 字符串库 string
- 2.4 布尔类型 bool
- 2.4.1 关系运算
- 2.4.2 逻辑运算
- 2.4.3 布尔代数运算定律*
- 2.4.4 Python 中真假的表示与计算*
- 2.5 列表和元组类型
- 2.5.1 列表类型 list
- 2.5.2 元组类型 tuple
- 2.6 数据的输入和输出
- 2.6.1 数据的输入
- 2.6.2 数据的输出
- 2.6.3 格式化输出
- 2.7 编程案例:查找问题
- 2.8 练习
- 第 3 章 数据处理的流程控制
- 3.1 顺序控制结构
- 3.2 分支控制结构
- 3.2.1 单分支结构
- 3.2.2 两路分支结构
- 3.2.3 多路分支结构
- 3.3 异常处理
- 3.3.1 传统的错误检测方法
- 3.3.2 传统错误检测方法的缺点
- 3.3.3 异常处理机制
- 3.4 循环控制结构
- 3.4.1 for 循环
- 3.4.2 while 循环
- 3.4.3 循环的非正常中断
- 3.4.4 嵌套循环
- 3.5 结构化程序设计
- 3.5.1 程序开发过程
- 3.5.2 结构化程序设计的基本内容
- 3.6 编程案例:如何求 n 个数据的最大值?
- 3.6.1 几种解题策略
- 3.6.2 经验总结
- 3.7 Python 布尔表达式用作控制结构*
- 3.8 练习
- 第 4 章 模块化编程
- 4.1 模块化编程基本概念
- 4.1.1 模块化设计概述
- 4.1.2 模块化编程
- 4.1.3 编程语言对模块化编程的支持
- 4.2 Python 语言中的函数
- 4.2.1 用函数减少重复代码 首先看一个简单的用字符画一棵树的程序:
- 4.2.2 用函数改善程序结构
- 4.2.3 用函数增强程序的通用性
- 4.2.4 小结:函数的定义与调用
- 4.2.5 变量的作用域
- 4.2.6 函数的返回值
- 4.3 自顶向下设计
- 4.3.1 顶层设计
- 4.3.2 第二层设计
- 4.3.3 第三层设计
- 4.3.4 第四层设计
- 4.3.5 自底向上实现与单元测试
- 4.3.6 开发过程小结
- 4.4 Python 模块*
- 4.4.1 模块的创建和使用
- 4.4.2 Python 程序架构
- 4.4.3 标准库模块
- 4.4.4 模块的有条件执行
- 4.5 练习
- 第 5 章 图形编程
- 5.1 概述
- 5.1.1 计算可视化
- 5.1.2 图形是复杂数据
- 5.1.3 用对象表示复杂数据
- 5.2 Tkinter 图形编程
- 5.2.1 导入模块及创建根窗口
- 5.2.2 创建画布
- 5.2.3 在画布上绘图
- 5.2.4 图形的事件处理
- 5.3 编程案例
- 5.3.1 统计图表
- 5.3.2 计算机动画
- 5.4 软件的层次化设计:一个案例
- 5.4.1 层次化体系结构
- 5.4.2 案例:图形库 graphics
- 5.4.3 graphics 与面向对象
- 5.5 练习
- 第 6 章 大量数据的表示和处理
- 6.1 概述
- 6.2 有序的数据集合体
- 6.2.1 字符串
- 6.2.2 列表
- 6.2.3 元组
- 6.3 无序的数据集合体
- 6.3.1 集合
- 6.3.2 字典
- 6.4 文件
- 6.4.1 文件的基本概念
- 6.4.2 文件操作
- 6.4.3 编程案例:文本文件分析
- 6.4.4 缓冲
- 6.4.5 二进制文件与随机存取*
- 6.5 几种高级数据结构*
- 6.5.1 链表
- 6.5.2 堆栈
- 6.5.3 队列
- 6.6 练习
- 第 7 章 面向对象思想与编程
- 7.1 数据与操作:两种观点
- 7.1.1 面向过程观点
- 7.1.2 面向对象观点
- 7.1.3 类是类型概念的发展
- 7.2 面向对象编程
- 7.2.1 类的定义
- 7.2.2 对象的创建
- 7.2.3 对象方法的调用
- 7.2.4 编程实例:模拟炮弹飞行
- 7.2.5 类与模块化
- 7.2.6 对象的集合体
- 7.3 超类与子类*
- 7.3.1 继承
- 7.3.2 覆写
- 7.3.3 多态性
- 7.4 面向对象设计*
- 7.5 练习
- 第 8 章 图形用户界面
- 8.1 图形用户界面概述
- 8.1.1 程序的用户界面
- 8.1.2 图形界面的组成
- 8.1.3 事件驱动
- 8.2 GUI 编程
- 8.2.1 UI 编程概述
- 8.2.2 初识 Tkinter
- 8.2.3 常见 GUI 构件的用法
- 8.2.4 布局
- 8.2.5 对话框*
- 8.3 Tkinter 事件驱动编程
- 8.3.1 事件和事件对象
- 8.3.2 事件处理
- 8.4 模型-视图设计方法
- 8.4.1 将 GUI 应用程序封装成对象
- 8.4.2 模型与视图
- 8.4.3 编程案例:汇率换算器
- 8.5 练习
- 第 9 章 模拟与并发
- 9.1 模拟
- 9.1.1 计算机建模
- 9.1.2 随机问题的建模与模拟
- 9.1.3 编程案例:乒乓球比赛模拟
- 9.2 原型法
- 9.3 并行计算*
- 9.3.1 串行、并发与并行
- 9.3.2 进程与线程
- 9.3.3 多线程编程的应用
- 9.3.4 Python 多线程编程
- 9.3.5 小结
- 9.4 练习
- 第 10 章 算法设计和分析
- 10.1 枚举法
- 10.2 递归
- 10.3 分治法
- 10.4 贪心法
- 10.5 算法分析
- 10.5.1 算法复杂度
- 10.5.2 算法分析实例
- 10.6 不可计算的问题
- 10.7 练习
- 第 11 章 计算+X
- 11.1 计算数学
- 11.2 生物信息学
- 11.3 计算物理学
- 11.4 计算化学
- 11.5 计算经济学
- 11.6 练习
- 附录
- 1 Python 异常处理参考
- 2 Tkinter 画布方法
- 3 Tkinter 编程参考
- 3.1 构件属性值的设置
- 3.2 构件的标准属性
- 3.3 各种构件的属性
- 3.4 对话框
- 3.5 事件
- 参考文献