### 7.2.5 类与模块化
我们在第 4 章讨论过模块化编程的思想。对于复杂程序,通常需要用分解的方法将程序 划分成若干模块,使每个模块仅针对有限的数据执行有限的操作。模块化能够使复杂程序的 设计更加可控。
对复杂程序一般有两种分解方法:功能分解和数据分解。功能分解是面向过程编程的基 础,依赖于子程序(如函数)概念,以过程为中心来建立功能模块;数据分解则是面向对象 编程的基础,依赖于类的概念,以数据为中心来建立数据模块。
功能模块不太适合复杂数据的处理。以处理“学生”数据的程序为例,如果按功能分解, 需要建立课程注册模块、修改学生信息模块、成绩登录模块等等。每一个模块(函数)的编 写,都需要知道“学生”数据的各种细节。
而数据模块则可以避免功能模块的不足。通过对“学生”的数据和操作的抽象,创建学 生类 S,对学生数据能够执行的操作构成 S 的对外界面,而操作的实现细节则隐藏在 S 内部, 从而使 S 的使用者无需了解“学生”数据的细节就能执行所需操作。
两种模块化方法具有类似的优点,如代码重用、易维护、支持团队开发等,但他们导致 的程序具有完全不同的执行方式。面向对象程序是由很多对象组成的,对象之间通过交互(发 送、接收消息)、协作完成计算任务,而传统程序则是由一系列预定的过程组成的,通过按顺序执行这些过程而完成计算任务。 模块化设计体现了信息隐藏的思想,即程序模块应当对模块用户尽可能隐藏内部细节,只保留必要的访问界面。对功能模块(函数),以 math 库中的函数 sqrt()为例,我们作为调用 者,并不知道该函数的内部实现细节,如数值的表示细节和求平方根的算法细节,而只需要 知道该函数能够对给定的数值求平方根即可。对数据模块(类)同样如此,以程序 7.6 定义 的 Projectile 类为例,该类的使用者无需了解炮弹究竟用什么数据来表示以及如何计算其飞 行,只需要了解该类的使用界面(update、getX、getY)就能编写炮弹模拟程序。
既然类是一种具有独立性的程序模块,就可以单独存储在模块文件中,无需与使用类的 代码(主程序)存储在一个程序文件中。这样做的好处是类模块可以重用,任何想使用这个 类的程序都可以导入类模块。例如,我们可以将 Projectile 类定义单独保存在模块 proj.py 中, 任何希望使用 Projectile 类的程序只需导入它,导入后即可创建对象、执行对象方法。就像下 面这样:
```
from proj import Projectile
def main():
angle, vel, h0, time = getInputs()
cball = Projectile(angle, vel, h0)
while cball.getY() >= 0:
cball.update(time)
print "射程: %0.1f 米." % (cball.getX())
```
我们当然可以让每个类单独构成一个模块,但这样一来,当类的数目很多时会导致模块 数目过多,反而增加程序的复杂性。实际上我们通常是将若干个相关的类存储在一个模块文 件中,例如 5.4.2 节介绍的 graphics.py 模块中就包含了所有图形类。不过,使用类的程序一 般都放在与类模块不同的模块中。
很多面向对象编程语言都以“类库”的形式提供具有各种实用功能的类模块给程序员使 用,就像过去面向过程编程语言提供“函数库”一样。OOP 往往能非常简单地解决复杂问题, 因为专业的程序员已经开发了大量可重用的代码。
- 前言
- 第 1 章 计算与计算思维
- 1.1 什么是计算?
- 1.1.1 计算机与计算
- 1.1.2 计算机语言
- 1.1.3 算法
- 1.1.4 实现
- 1.2 什么是计算思维?
- 1.2.1 计算思维的基本原则
- 1.2.2 计算思维的具体例子
- 1.2.3 日常生活中的计算思维
- 1.2.4 计算思维对其他学科的影响
- 1.3 初识 Python
- 1.3.1 Python 简介
- 1.3.2 第一个程序
- 1.3.3 程序的执行方式
- 1.3.4 Python 语言的基本成分
- 1.4 程序排错
- 1.5 练习
- 第 2 章 用数据表示现实世界
- 2.1 数据和数据类型
- 2.1.1 数据是对现实的抽象
- 2.1.1 常量与变量
- 2.1.2 数据类型
- 2.1.3 Python 的动态类型*
- 2.2 数值类型
- 2.2.1 整数类型 int
- 2.2.2 长整数类型 long
- 2.2.3 浮点数类型 float
- 2.2.4 数学库模块 math
- 2.2.5 复数类型 complex*
- 2.3 字符串类型 str
- 2.3.1 字符串类型的字面值形式
- 2.3.2 字符串类型的操作
- 2.3.3 字符的机内表示
- 2.3.4 字符串类型与其他类型的转换
- 2.3.5 字符串库 string
- 2.4 布尔类型 bool
- 2.4.1 关系运算
- 2.4.2 逻辑运算
- 2.4.3 布尔代数运算定律*
- 2.4.4 Python 中真假的表示与计算*
- 2.5 列表和元组类型
- 2.5.1 列表类型 list
- 2.5.2 元组类型 tuple
- 2.6 数据的输入和输出
- 2.6.1 数据的输入
- 2.6.2 数据的输出
- 2.6.3 格式化输出
- 2.7 编程案例:查找问题
- 2.8 练习
- 第 3 章 数据处理的流程控制
- 3.1 顺序控制结构
- 3.2 分支控制结构
- 3.2.1 单分支结构
- 3.2.2 两路分支结构
- 3.2.3 多路分支结构
- 3.3 异常处理
- 3.3.1 传统的错误检测方法
- 3.3.2 传统错误检测方法的缺点
- 3.3.3 异常处理机制
- 3.4 循环控制结构
- 3.4.1 for 循环
- 3.4.2 while 循环
- 3.4.3 循环的非正常中断
- 3.4.4 嵌套循环
- 3.5 结构化程序设计
- 3.5.1 程序开发过程
- 3.5.2 结构化程序设计的基本内容
- 3.6 编程案例:如何求 n 个数据的最大值?
- 3.6.1 几种解题策略
- 3.6.2 经验总结
- 3.7 Python 布尔表达式用作控制结构*
- 3.8 练习
- 第 4 章 模块化编程
- 4.1 模块化编程基本概念
- 4.1.1 模块化设计概述
- 4.1.2 模块化编程
- 4.1.3 编程语言对模块化编程的支持
- 4.2 Python 语言中的函数
- 4.2.1 用函数减少重复代码 首先看一个简单的用字符画一棵树的程序:
- 4.2.2 用函数改善程序结构
- 4.2.3 用函数增强程序的通用性
- 4.2.4 小结:函数的定义与调用
- 4.2.5 变量的作用域
- 4.2.6 函数的返回值
- 4.3 自顶向下设计
- 4.3.1 顶层设计
- 4.3.2 第二层设计
- 4.3.3 第三层设计
- 4.3.4 第四层设计
- 4.3.5 自底向上实现与单元测试
- 4.3.6 开发过程小结
- 4.4 Python 模块*
- 4.4.1 模块的创建和使用
- 4.4.2 Python 程序架构
- 4.4.3 标准库模块
- 4.4.4 模块的有条件执行
- 4.5 练习
- 第 5 章 图形编程
- 5.1 概述
- 5.1.1 计算可视化
- 5.1.2 图形是复杂数据
- 5.1.3 用对象表示复杂数据
- 5.2 Tkinter 图形编程
- 5.2.1 导入模块及创建根窗口
- 5.2.2 创建画布
- 5.2.3 在画布上绘图
- 5.2.4 图形的事件处理
- 5.3 编程案例
- 5.3.1 统计图表
- 5.3.2 计算机动画
- 5.4 软件的层次化设计:一个案例
- 5.4.1 层次化体系结构
- 5.4.2 案例:图形库 graphics
- 5.4.3 graphics 与面向对象
- 5.5 练习
- 第 6 章 大量数据的表示和处理
- 6.1 概述
- 6.2 有序的数据集合体
- 6.2.1 字符串
- 6.2.2 列表
- 6.2.3 元组
- 6.3 无序的数据集合体
- 6.3.1 集合
- 6.3.2 字典
- 6.4 文件
- 6.4.1 文件的基本概念
- 6.4.2 文件操作
- 6.4.3 编程案例:文本文件分析
- 6.4.4 缓冲
- 6.4.5 二进制文件与随机存取*
- 6.5 几种高级数据结构*
- 6.5.1 链表
- 6.5.2 堆栈
- 6.5.3 队列
- 6.6 练习
- 第 7 章 面向对象思想与编程
- 7.1 数据与操作:两种观点
- 7.1.1 面向过程观点
- 7.1.2 面向对象观点
- 7.1.3 类是类型概念的发展
- 7.2 面向对象编程
- 7.2.1 类的定义
- 7.2.2 对象的创建
- 7.2.3 对象方法的调用
- 7.2.4 编程实例:模拟炮弹飞行
- 7.2.5 类与模块化
- 7.2.6 对象的集合体
- 7.3 超类与子类*
- 7.3.1 继承
- 7.3.2 覆写
- 7.3.3 多态性
- 7.4 面向对象设计*
- 7.5 练习
- 第 8 章 图形用户界面
- 8.1 图形用户界面概述
- 8.1.1 程序的用户界面
- 8.1.2 图形界面的组成
- 8.1.3 事件驱动
- 8.2 GUI 编程
- 8.2.1 UI 编程概述
- 8.2.2 初识 Tkinter
- 8.2.3 常见 GUI 构件的用法
- 8.2.4 布局
- 8.2.5 对话框*
- 8.3 Tkinter 事件驱动编程
- 8.3.1 事件和事件对象
- 8.3.2 事件处理
- 8.4 模型-视图设计方法
- 8.4.1 将 GUI 应用程序封装成对象
- 8.4.2 模型与视图
- 8.4.3 编程案例:汇率换算器
- 8.5 练习
- 第 9 章 模拟与并发
- 9.1 模拟
- 9.1.1 计算机建模
- 9.1.2 随机问题的建模与模拟
- 9.1.3 编程案例:乒乓球比赛模拟
- 9.2 原型法
- 9.3 并行计算*
- 9.3.1 串行、并发与并行
- 9.3.2 进程与线程
- 9.3.3 多线程编程的应用
- 9.3.4 Python 多线程编程
- 9.3.5 小结
- 9.4 练习
- 第 10 章 算法设计和分析
- 10.1 枚举法
- 10.2 递归
- 10.3 分治法
- 10.4 贪心法
- 10.5 算法分析
- 10.5.1 算法复杂度
- 10.5.2 算法分析实例
- 10.6 不可计算的问题
- 10.7 练习
- 第 11 章 计算+X
- 11.1 计算数学
- 11.2 生物信息学
- 11.3 计算物理学
- 11.4 计算化学
- 11.5 计算经济学
- 11.6 练习
- 附录
- 1 Python 异常处理参考
- 2 Tkinter 画布方法
- 3 Tkinter 编程参考
- 3.1 构件属性值的设置
- 3.2 构件的标准属性
- 3.3 各种构件的属性
- 3.4 对话框
- 3.5 事件
- 参考文献