## 9.2 原型法
我们在 4.3 中介绍了自顶向下逐步求精的程序设计方法。自顶向下设计是非常强大的程 序设计技术,但它也有不适用的场合。
自顶向下设计的第一步是顶层设计,这需要设计者对问题的全局有清晰的认识。万一要 解决的问题非常复杂,或者用户需求不是很完整、清晰,这时顶层设计就非常困难。另外, 设计者有时候会卡在自顶向下层次中的某一层,这就导致下层的精化无法继续,从而影响整 个程序的开发。即便前面这两个问题都不存在,自顶向下设计也存在开发周期过长、工作量 太大的缺点。
另一种程序设计方法是原型法(prototyping)。这种方法的思想是,先开发一个简单版 本,即功能少、界面简单的版本,然后再对这个简单版本逐步进行改善(添加或修改功能), 直至完全满足用户需求。初始精简版程序称为原型(prototype)。应用原型法来进行软件开 发的步骤大致如下:
(1)确认基本需求;
(2)创建原型;
(3)向用户演示或交付用户试用,获得反馈意见;
(4)改善原型;回到(3),重复(3)、(4),直至用户最终认可。 可见,原型技术不是对整个问题按照“设计、实现、测试”的过程来开发,而是先按此
过程创建一个原型,然后根据用户反馈再重复此过程来改善原型。这样,通过许多“设计- 实现-测试”小循环,原型逐步得到改善和扩展,直至成为最终产品。因此原型法也称为“螺 旋式开发”。原型法适合于大型程序开发中需求分析难以一次完成的场合,也常用在程序用 户界面设计领域。
原型法开发有很多优点,例如:用户可以通过实际使用的体验来评价软件产品是否合意, 而不是仅凭开发者口头的描述;开发者和用户可以在开发过程中发现以前没有考虑到的需求 或问题;开发者可以在产品开发的早期就获得用户反馈,避免在开发后期来修改设计,因为 越往后,修改的代价就越大。
原型法开发中的原型可以有两种处理方法。一种方法是,一开始构造的原型就是最终产 品的核心,后续工作都是对原型的改善,通过不断的积累和修改最后得到符合用户需求的产 品。开发过程中,原型尽管功能不完善,但一直是可用的,甚至可以作为在最终产品交付前 的替代产品。另一种方法是,初始创建的原型只是作为与用户进行交互的工具,通过不断展 示给用户看而获得反馈并改进。等到用户认可原型,该原型即被丢弃,开发者将基于用户已 经确认的需求开始正式开发产品。这种做法称为“快速原型法”,因为其主要目的是尽快构 造系统模型,强调的是开发速度。
我们在 9.1.3 中就采用了原型法来设计实现乒乓球比赛的模拟程序。 解决问题的关键是模拟乒乓球比赛,而比赛的最基本动作是打一个回合及记分,因此我们一开始就考虑如何模拟一个回合的比赛并给胜方得分。即:
```
if random() < prob:
pointA = pointA + 1
else:
pointB = pointB + 1
```
经过测试,可以确认这段代码确实能够模拟具有特定得分概率的球员之间的比赛。在此 基础上,根据实际乒乓球比赛的规则要求,我们将回合扩展到局,又扩展到一场 3 局 2 胜的 比赛。在设计的前期阶段,我们做了很多简化,比如直接假设球员的得分概率为 0.55,直接 规定采用 21 分一局的规则等等。随着螺旋式开发的进展,程序功能越来越完善,所有被简 化的东西最终都会以完善的形式实现。总结这个开发过程,我们的模拟程序大致经历了如下 阶段:
阶段 1:建立原型,能进行回合比赛并为胜方记分;
阶段 2:扩展为能进行一局比赛;
阶段 3:扩展为能进行 3 局 2 胜的比赛;
阶段 4:球员的得分概率、比赛次数改为由用户输入;
阶段 5:添加结果分析,输出分析结果。
通过原型法来编程序,对初学程序设计的人来说是很合适的,因为可以从原型获得最终 程序的感性认识,并进而理解自己到底要写什么样的程序。
要指出的是,螺旋式开发并不是用来取代自顶向下设计的,这两种设计方法是互为补充 的关系。例如,对于大型的复杂程序,如果用原型法,可能原型本身也比较复杂,这时就可 以采用自顶向下设计来创建原型。好的设计者应该根据情况选用多种设计方法,这一切都要 通过实践来学习掌握。
- 前言
- 第 1 章 计算与计算思维
- 1.1 什么是计算?
- 1.1.1 计算机与计算
- 1.1.2 计算机语言
- 1.1.3 算法
- 1.1.4 实现
- 1.2 什么是计算思维?
- 1.2.1 计算思维的基本原则
- 1.2.2 计算思维的具体例子
- 1.2.3 日常生活中的计算思维
- 1.2.4 计算思维对其他学科的影响
- 1.3 初识 Python
- 1.3.1 Python 简介
- 1.3.2 第一个程序
- 1.3.3 程序的执行方式
- 1.3.4 Python 语言的基本成分
- 1.4 程序排错
- 1.5 练习
- 第 2 章 用数据表示现实世界
- 2.1 数据和数据类型
- 2.1.1 数据是对现实的抽象
- 2.1.1 常量与变量
- 2.1.2 数据类型
- 2.1.3 Python 的动态类型*
- 2.2 数值类型
- 2.2.1 整数类型 int
- 2.2.2 长整数类型 long
- 2.2.3 浮点数类型 float
- 2.2.4 数学库模块 math
- 2.2.5 复数类型 complex*
- 2.3 字符串类型 str
- 2.3.1 字符串类型的字面值形式
- 2.3.2 字符串类型的操作
- 2.3.3 字符的机内表示
- 2.3.4 字符串类型与其他类型的转换
- 2.3.5 字符串库 string
- 2.4 布尔类型 bool
- 2.4.1 关系运算
- 2.4.2 逻辑运算
- 2.4.3 布尔代数运算定律*
- 2.4.4 Python 中真假的表示与计算*
- 2.5 列表和元组类型
- 2.5.1 列表类型 list
- 2.5.2 元组类型 tuple
- 2.6 数据的输入和输出
- 2.6.1 数据的输入
- 2.6.2 数据的输出
- 2.6.3 格式化输出
- 2.7 编程案例:查找问题
- 2.8 练习
- 第 3 章 数据处理的流程控制
- 3.1 顺序控制结构
- 3.2 分支控制结构
- 3.2.1 单分支结构
- 3.2.2 两路分支结构
- 3.2.3 多路分支结构
- 3.3 异常处理
- 3.3.1 传统的错误检测方法
- 3.3.2 传统错误检测方法的缺点
- 3.3.3 异常处理机制
- 3.4 循环控制结构
- 3.4.1 for 循环
- 3.4.2 while 循环
- 3.4.3 循环的非正常中断
- 3.4.4 嵌套循环
- 3.5 结构化程序设计
- 3.5.1 程序开发过程
- 3.5.2 结构化程序设计的基本内容
- 3.6 编程案例:如何求 n 个数据的最大值?
- 3.6.1 几种解题策略
- 3.6.2 经验总结
- 3.7 Python 布尔表达式用作控制结构*
- 3.8 练习
- 第 4 章 模块化编程
- 4.1 模块化编程基本概念
- 4.1.1 模块化设计概述
- 4.1.2 模块化编程
- 4.1.3 编程语言对模块化编程的支持
- 4.2 Python 语言中的函数
- 4.2.1 用函数减少重复代码 首先看一个简单的用字符画一棵树的程序:
- 4.2.2 用函数改善程序结构
- 4.2.3 用函数增强程序的通用性
- 4.2.4 小结:函数的定义与调用
- 4.2.5 变量的作用域
- 4.2.6 函数的返回值
- 4.3 自顶向下设计
- 4.3.1 顶层设计
- 4.3.2 第二层设计
- 4.3.3 第三层设计
- 4.3.4 第四层设计
- 4.3.5 自底向上实现与单元测试
- 4.3.6 开发过程小结
- 4.4 Python 模块*
- 4.4.1 模块的创建和使用
- 4.4.2 Python 程序架构
- 4.4.3 标准库模块
- 4.4.4 模块的有条件执行
- 4.5 练习
- 第 5 章 图形编程
- 5.1 概述
- 5.1.1 计算可视化
- 5.1.2 图形是复杂数据
- 5.1.3 用对象表示复杂数据
- 5.2 Tkinter 图形编程
- 5.2.1 导入模块及创建根窗口
- 5.2.2 创建画布
- 5.2.3 在画布上绘图
- 5.2.4 图形的事件处理
- 5.3 编程案例
- 5.3.1 统计图表
- 5.3.2 计算机动画
- 5.4 软件的层次化设计:一个案例
- 5.4.1 层次化体系结构
- 5.4.2 案例:图形库 graphics
- 5.4.3 graphics 与面向对象
- 5.5 练习
- 第 6 章 大量数据的表示和处理
- 6.1 概述
- 6.2 有序的数据集合体
- 6.2.1 字符串
- 6.2.2 列表
- 6.2.3 元组
- 6.3 无序的数据集合体
- 6.3.1 集合
- 6.3.2 字典
- 6.4 文件
- 6.4.1 文件的基本概念
- 6.4.2 文件操作
- 6.4.3 编程案例:文本文件分析
- 6.4.4 缓冲
- 6.4.5 二进制文件与随机存取*
- 6.5 几种高级数据结构*
- 6.5.1 链表
- 6.5.2 堆栈
- 6.5.3 队列
- 6.6 练习
- 第 7 章 面向对象思想与编程
- 7.1 数据与操作:两种观点
- 7.1.1 面向过程观点
- 7.1.2 面向对象观点
- 7.1.3 类是类型概念的发展
- 7.2 面向对象编程
- 7.2.1 类的定义
- 7.2.2 对象的创建
- 7.2.3 对象方法的调用
- 7.2.4 编程实例:模拟炮弹飞行
- 7.2.5 类与模块化
- 7.2.6 对象的集合体
- 7.3 超类与子类*
- 7.3.1 继承
- 7.3.2 覆写
- 7.3.3 多态性
- 7.4 面向对象设计*
- 7.5 练习
- 第 8 章 图形用户界面
- 8.1 图形用户界面概述
- 8.1.1 程序的用户界面
- 8.1.2 图形界面的组成
- 8.1.3 事件驱动
- 8.2 GUI 编程
- 8.2.1 UI 编程概述
- 8.2.2 初识 Tkinter
- 8.2.3 常见 GUI 构件的用法
- 8.2.4 布局
- 8.2.5 对话框*
- 8.3 Tkinter 事件驱动编程
- 8.3.1 事件和事件对象
- 8.3.2 事件处理
- 8.4 模型-视图设计方法
- 8.4.1 将 GUI 应用程序封装成对象
- 8.4.2 模型与视图
- 8.4.3 编程案例:汇率换算器
- 8.5 练习
- 第 9 章 模拟与并发
- 9.1 模拟
- 9.1.1 计算机建模
- 9.1.2 随机问题的建模与模拟
- 9.1.3 编程案例:乒乓球比赛模拟
- 9.2 原型法
- 9.3 并行计算*
- 9.3.1 串行、并发与并行
- 9.3.2 进程与线程
- 9.3.3 多线程编程的应用
- 9.3.4 Python 多线程编程
- 9.3.5 小结
- 9.4 练习
- 第 10 章 算法设计和分析
- 10.1 枚举法
- 10.2 递归
- 10.3 分治法
- 10.4 贪心法
- 10.5 算法分析
- 10.5.1 算法复杂度
- 10.5.2 算法分析实例
- 10.6 不可计算的问题
- 10.7 练习
- 第 11 章 计算+X
- 11.1 计算数学
- 11.2 生物信息学
- 11.3 计算物理学
- 11.4 计算化学
- 11.5 计算经济学
- 11.6 练习
- 附录
- 1 Python 异常处理参考
- 2 Tkinter 画布方法
- 3 Tkinter 编程参考
- 3.1 构件属性值的设置
- 3.2 构件的标准属性
- 3.3 各种构件的属性
- 3.4 对话框
- 3.5 事件
- 参考文献