### 4.2.4 小结:函数的定义与调用
通过前面的例子,读者应该已经非常熟悉 Python 中函数定义的语法。在此总结如下:
```
def <函数名>(<形式参数>):
<函数体>
```
其中函数名是标识符,命名必须符合 Python 标识符的规定;形式参数是用逗号分隔的变量名序列(可以为空)。函数体是语句序列,左端必须缩进一些空白。 一旦定义了一个函数,就可以在程序的任何地方调用这个函数。函数调用的语法如下:
```
<函数名>(<实际参数>)
```
其中实际参数可以是表达式,个数必须和形式参数相同。注意,这里列出的函数调用语法实 际上适用于没有返回值的函数,即 4.1.3 节中提到的“过程”。4.2.6 小节会讨论具有返回值 的函数。
当 Python 遇到一个函数调用时,将通过四个步骤来处理这个调用。假设程序 P 现在执 行到了一个函数调用 f(a),则这四个步骤是:
(1)调用者 P 在调用点暂停执行(术语也称为 P 挂起);
(2)函数 f 的形式参数被赋予实际参数 a 的值;
(3)执行 f 的函数体;
(4)f 执行完毕后,控制返回到 P 中调用点的下一条语句。
下面我们以程序 4.6 为例,具体描述函数调用过程。为了方便阅读,将程序 4.6 的主函 数 main 罗列在下面,整个程序从 main 开始执行。
```
def main():
star_treetop()
treetrunk()
print
caret_treetop()
treetrunk()
```
当 Python 执行到 star_treetop()时,main 暂停执行,控制转到 star_treetop。 因为没有参数传递问题,所以直接执行 star_treetop 的函数体。图 4.1 描述了这个函数 调用的控制转移情况。
![](https://box.kancloud.cn/2016-02-22_56cafcde9c1a0.png)
图 4.1 控制从 main 转移到 star_treetop
控制转到 star_treetop 后执行的第一条语句又是一个函数调用 treetop("*"), 于是 Python 又暂停执行 star_treetop,而将控制转到 treetop("*")。Python 检查 treetop 的定义后发现它有一个形式参数 ch,于是将函数调用 treetop("*")的实际参 数"*"传递给形式参数 ch,这相当于在 treetop 的函数体之前增加了一条赋值语句:
```
ch = "*"
```
参数传递后开始执行 treetop 的函数体。图 4.2 展现了这时的状态,注意 treetop内部的变量 ch 已经被赋值为"*"。
![](https://box.kancloud.cn/2016-02-22_56cafcdeae5d9.png)
图 4.2 控制从 star_treetop 转移到 treetop
由于 treetop()的函数体是一系列 print 语句,没有更多函数调用,于是 Python 顺 序执行这些语句,结束后将控制返回到 treetop 调用点的下一条语句,即 star_treetop 中的第二条 treetop("*")语句,这时的情形参看图 4.3。注意,当函数执行完毕,函数的 变量所占用的存储空间将被 Python 收回,任何变量都不可能将数据保持到下一次执行函数, 故图 4.3 中 ch 显示为未赋值状态。
![](https://box.kancloud.cn/2016-02-22_56cafcdec4e4b.png)
图 4.3 控制从 treetop 返回 star_treetop
接下来执行 star_treetop 的第二条 treetop("*"),其过程和前面一条完全一样, 我们就不作图演示了。现在,当控制从 treetop 再次返回 star_treetop 时,此函数也 执行完毕,故控制又返回到 main 函数中调用点的下一条语句。如图 4.4 所示。
![](https://box.kancloud.cn/2016-02-22_56cafcdee013d.png)
图 4.4 控制从 star_treetop 返回 main
控制返回 main 后执行的是第二条语句 treetrunk(),这又是一个函数调用。于是 main 再次暂停执行,控制转移到函数 treetrunk。treetrunk 执行完毕控制返回 main, 执行第三条语句 print,输出一个空行后执行函数调用 caret_treetop()。这和前面 star_treetop()的执行过程是类似的,控制转移到 caret_treetop 的函数体后遇到的 是 treetop("^"),这次传递给形式参数 ch 的值是字符"^",图 4.5 表示了此时的状态。
![](https://box.kancloud.cn/2016-02-22_56cafcdef0add.png)
图 4.5 控制从 caret_treetop 转到 treetop 并传递不同实际参数
此后的执行过程与上述类似,我们不再逐一说明。当程序最后一行的调用 treetrunk 执行完毕,控制返回到 main 时到达程序末尾,于是整个程序结束。其实,main 本身也是一个函数,程序 4.6 的最后一行就是对 main 的调用。由于 main 是顶层模块,调用并执行 main 后控制只能返回给 Python——所以整个程序执行完毕后我们看到的是熟悉的“>>>”。
以上我们通过例子描述了 Python 的函数定义和调用。还要说明一点,函数定义中提到 形式参数可以是用逗号分隔的变量名序列。对于有多个形式参数的函数,调用时一定要注意 形式参数与实际参数的匹配。简单的做法是按位置匹配,即调用时提供的第一个实际参数赋 值给第一个形式参数,第二个实际参数赋值给第二个形式参数,依此类推。
作为例子,我们再来研究用字符画树冠的问题。树冠是由两个三角形图案组成的,程序 4.2 或程序 4.6 中,函数 treetop 的功能就是用字符画三角形图案,只不过程序 4.2 固定用 字符"*"画画,程序 4.6 可以用任意字符画画。观察 treetop 的函数体,可见图案是由多 条 print 语句所打印的字符串拼成的,并且每条 print 所打印的字符串很有规律:每行中 "*"的个数是自顶向下分别是 1、3、5、7,而左边留的空格数自顶向下分别是 3、2、1、0。 对这些数字做一点分析,很容易得出规律:设树冠最宽处有 w 个"*"字符,则当某一行上要 画 c 个"*"时,该行左边留的空格数就是(w - c) / 2。根据这个规律,我们定义一个新的 treetop 函数,它具有两个参数:一个是画图所用字符 ch,另一个是树冠宽度 width(为 对称起见应该用奇数,此前例子都固定为 7)。显然这个新的 treetop 函数更加通用化,可 以用任意字符画任意宽度的树冠。
```
def treetop(ch,width):
for c in range(1,width+1,2):
print ((width–c)/2) * " " + c * ch
```
下面我们在 Python 交互环境下定义这个函数,然后做一些测试。结果如下:
```
>>> treetop("*",7)
*
***
*****
*******
>>> treetop("@",9)
@
@@@
@@@@@
@@@@@@@
@@@@@@@@@
>>> treetop(11,"A")
Traceback (most recent call last):
File "<pyshell#9>", line 1, in <module> treetop(11,"A")
File "<pyshell#2>", line 2, in treetop for c in range(1,width+1,2):
TypeError: cannot concatenate 'str' and 'int' objects
```
从上例可知,由于函数 treetop 有两个形式参数,因此调用该函数时必须传递两个实 际参数与之匹配。参数传递的效果相当于在 treetop 的函数体前面执行了两条赋值语句:
```
ch = ...
width = ...
```
如果实际参数与形式参数不匹配,函数执行就可能出错,如上例中的 treetop(11,"A")。 更严重的是函数执行似乎没有出错,但参数的错误匹配实际上导致计算结果完全没有意义。
例如我们定义一个显示身高体重信息的函数,然后调用之:
```
>>> def printInfo(height,weight):
print "Height:",height
print "Weight:",weight
>>> printInfo(80,1.80)
Height: 80
Weight: 1.8
```
可见,由于调用时参数传递不匹配,函数虽然能够执行,但结果无意义。
关键字参数
函数调用时的参数传递通常采用上述“按位置匹配”的方式,但 Python 还提供另一种 参数传递方式——关键字参数。关键字参数形如“<形参名> = <实参值>”,即通过形式参数 的名字来指示为哪个形参传递什么值。例如:
```
>>> treetop(width = 11,ch = "A")
A
AAA
AAAAA
AAAAAAA
AAAAAAAAA
AAAAAAAAAAA
```
关键字参数在某些场合用起来更方便。例如,如果一个函数有很多参数,但是调用时只 想为个别参数传递值,而其他参数采用缺省值,这是采用关键字参数就是必然的选择。下面 是一个简单的例子:
```
>>> def f(a,b=7,c=2):
print a,b,c
>>> f(2005)
2005 7 2
>>> f(1927,8,1)
1927 8 1
>>> f(1921,c=1)
1921 7 1
```
注意,这个例子同时说明了如何为函数参数指定缺省值。
- 前言
- 第 1 章 计算与计算思维
- 1.1 什么是计算?
- 1.1.1 计算机与计算
- 1.1.2 计算机语言
- 1.1.3 算法
- 1.1.4 实现
- 1.2 什么是计算思维?
- 1.2.1 计算思维的基本原则
- 1.2.2 计算思维的具体例子
- 1.2.3 日常生活中的计算思维
- 1.2.4 计算思维对其他学科的影响
- 1.3 初识 Python
- 1.3.1 Python 简介
- 1.3.2 第一个程序
- 1.3.3 程序的执行方式
- 1.3.4 Python 语言的基本成分
- 1.4 程序排错
- 1.5 练习
- 第 2 章 用数据表示现实世界
- 2.1 数据和数据类型
- 2.1.1 数据是对现实的抽象
- 2.1.1 常量与变量
- 2.1.2 数据类型
- 2.1.3 Python 的动态类型*
- 2.2 数值类型
- 2.2.1 整数类型 int
- 2.2.2 长整数类型 long
- 2.2.3 浮点数类型 float
- 2.2.4 数学库模块 math
- 2.2.5 复数类型 complex*
- 2.3 字符串类型 str
- 2.3.1 字符串类型的字面值形式
- 2.3.2 字符串类型的操作
- 2.3.3 字符的机内表示
- 2.3.4 字符串类型与其他类型的转换
- 2.3.5 字符串库 string
- 2.4 布尔类型 bool
- 2.4.1 关系运算
- 2.4.2 逻辑运算
- 2.4.3 布尔代数运算定律*
- 2.4.4 Python 中真假的表示与计算*
- 2.5 列表和元组类型
- 2.5.1 列表类型 list
- 2.5.2 元组类型 tuple
- 2.6 数据的输入和输出
- 2.6.1 数据的输入
- 2.6.2 数据的输出
- 2.6.3 格式化输出
- 2.7 编程案例:查找问题
- 2.8 练习
- 第 3 章 数据处理的流程控制
- 3.1 顺序控制结构
- 3.2 分支控制结构
- 3.2.1 单分支结构
- 3.2.2 两路分支结构
- 3.2.3 多路分支结构
- 3.3 异常处理
- 3.3.1 传统的错误检测方法
- 3.3.2 传统错误检测方法的缺点
- 3.3.3 异常处理机制
- 3.4 循环控制结构
- 3.4.1 for 循环
- 3.4.2 while 循环
- 3.4.3 循环的非正常中断
- 3.4.4 嵌套循环
- 3.5 结构化程序设计
- 3.5.1 程序开发过程
- 3.5.2 结构化程序设计的基本内容
- 3.6 编程案例:如何求 n 个数据的最大值?
- 3.6.1 几种解题策略
- 3.6.2 经验总结
- 3.7 Python 布尔表达式用作控制结构*
- 3.8 练习
- 第 4 章 模块化编程
- 4.1 模块化编程基本概念
- 4.1.1 模块化设计概述
- 4.1.2 模块化编程
- 4.1.3 编程语言对模块化编程的支持
- 4.2 Python 语言中的函数
- 4.2.1 用函数减少重复代码 首先看一个简单的用字符画一棵树的程序:
- 4.2.2 用函数改善程序结构
- 4.2.3 用函数增强程序的通用性
- 4.2.4 小结:函数的定义与调用
- 4.2.5 变量的作用域
- 4.2.6 函数的返回值
- 4.3 自顶向下设计
- 4.3.1 顶层设计
- 4.3.2 第二层设计
- 4.3.3 第三层设计
- 4.3.4 第四层设计
- 4.3.5 自底向上实现与单元测试
- 4.3.6 开发过程小结
- 4.4 Python 模块*
- 4.4.1 模块的创建和使用
- 4.4.2 Python 程序架构
- 4.4.3 标准库模块
- 4.4.4 模块的有条件执行
- 4.5 练习
- 第 5 章 图形编程
- 5.1 概述
- 5.1.1 计算可视化
- 5.1.2 图形是复杂数据
- 5.1.3 用对象表示复杂数据
- 5.2 Tkinter 图形编程
- 5.2.1 导入模块及创建根窗口
- 5.2.2 创建画布
- 5.2.3 在画布上绘图
- 5.2.4 图形的事件处理
- 5.3 编程案例
- 5.3.1 统计图表
- 5.3.2 计算机动画
- 5.4 软件的层次化设计:一个案例
- 5.4.1 层次化体系结构
- 5.4.2 案例:图形库 graphics
- 5.4.3 graphics 与面向对象
- 5.5 练习
- 第 6 章 大量数据的表示和处理
- 6.1 概述
- 6.2 有序的数据集合体
- 6.2.1 字符串
- 6.2.2 列表
- 6.2.3 元组
- 6.3 无序的数据集合体
- 6.3.1 集合
- 6.3.2 字典
- 6.4 文件
- 6.4.1 文件的基本概念
- 6.4.2 文件操作
- 6.4.3 编程案例:文本文件分析
- 6.4.4 缓冲
- 6.4.5 二进制文件与随机存取*
- 6.5 几种高级数据结构*
- 6.5.1 链表
- 6.5.2 堆栈
- 6.5.3 队列
- 6.6 练习
- 第 7 章 面向对象思想与编程
- 7.1 数据与操作:两种观点
- 7.1.1 面向过程观点
- 7.1.2 面向对象观点
- 7.1.3 类是类型概念的发展
- 7.2 面向对象编程
- 7.2.1 类的定义
- 7.2.2 对象的创建
- 7.2.3 对象方法的调用
- 7.2.4 编程实例:模拟炮弹飞行
- 7.2.5 类与模块化
- 7.2.6 对象的集合体
- 7.3 超类与子类*
- 7.3.1 继承
- 7.3.2 覆写
- 7.3.3 多态性
- 7.4 面向对象设计*
- 7.5 练习
- 第 8 章 图形用户界面
- 8.1 图形用户界面概述
- 8.1.1 程序的用户界面
- 8.1.2 图形界面的组成
- 8.1.3 事件驱动
- 8.2 GUI 编程
- 8.2.1 UI 编程概述
- 8.2.2 初识 Tkinter
- 8.2.3 常见 GUI 构件的用法
- 8.2.4 布局
- 8.2.5 对话框*
- 8.3 Tkinter 事件驱动编程
- 8.3.1 事件和事件对象
- 8.3.2 事件处理
- 8.4 模型-视图设计方法
- 8.4.1 将 GUI 应用程序封装成对象
- 8.4.2 模型与视图
- 8.4.3 编程案例:汇率换算器
- 8.5 练习
- 第 9 章 模拟与并发
- 9.1 模拟
- 9.1.1 计算机建模
- 9.1.2 随机问题的建模与模拟
- 9.1.3 编程案例:乒乓球比赛模拟
- 9.2 原型法
- 9.3 并行计算*
- 9.3.1 串行、并发与并行
- 9.3.2 进程与线程
- 9.3.3 多线程编程的应用
- 9.3.4 Python 多线程编程
- 9.3.5 小结
- 9.4 练习
- 第 10 章 算法设计和分析
- 10.1 枚举法
- 10.2 递归
- 10.3 分治法
- 10.4 贪心法
- 10.5 算法分析
- 10.5.1 算法复杂度
- 10.5.2 算法分析实例
- 10.6 不可计算的问题
- 10.7 练习
- 第 11 章 计算+X
- 11.1 计算数学
- 11.2 生物信息学
- 11.3 计算物理学
- 11.4 计算化学
- 11.5 计算经济学
- 11.6 练习
- 附录
- 1 Python 异常处理参考
- 2 Tkinter 画布方法
- 3 Tkinter 编程参考
- 3.1 构件属性值的设置
- 3.2 构件的标准属性
- 3.3 各种构件的属性
- 3.4 对话框
- 3.5 事件
- 参考文献