前面说过,defaultServiceManager返回的是一个BpServiceManager,通过它可以把命令请求发送给handle值为0的目的端。按照图6-3所示的IServiceManager“家谱”,无论如何也应该有一个类从BnServiceManager派生出来并处理这些来自远方的请求吧?
很可惜,源码中竟然没有这样的一个类存在!但确实又有这么一个程序完成了BnServiceManager未尽的工作,这个程序就是servicemanager,它的代码在Service_manager.c中,如下所示:
* * * * *
**注意**:通过这件事情是否能感悟到什么?嗯,我们确实可以抛开前面所有的那些封装,直接与Binder设备打交道。
* * * * *
下面来看ServiceManager是怎么放弃华丽的封装去做Manager的。
1. ServiceManager的入口函数
ServiceManager的入口函数如下所示。
**ServiceManager.c**
~~~
int main(int argc, char **argv)
{
structbinder_state *bs;
//BINDER_SERVICE_MANAGER的值为NULL,是一个magic number。
void*svcmgr = BINDER_SERVICE_MANAGER;
//①应该是打开binder设备吧?
bs = binder_open(128*1024);
//②成为manager,是不是把自己的handle置为0?
binder_become_context_manager(bs)
svcmgr_handle= svcmgr;
//③处理客户端发过来的请求。
binder_loop(bs, svcmgr_handler);
}
~~~
这里,一共有三个重要关键点。必须对其逐一地进行分析。
>[warning] **注意**:有一些函数是在Binder.c中实现的,此Binder.c不是前面碰到的那个Binder.cpp。
2. 打开Binder设备
binder_open函数用于打开Binder设备,它的实现如下所示:
**Binder.c**
~~~
/*
这里的binder_open应该与我们之前在ProcessState中看到的一样:
1)打开Binder设备
2)内存映射
*/
struct binder_state *binder_open(unsigned mapsize)
{
structbinder_state *bs;
bs =malloc(sizeof(*bs));
....
bs->fd= open("/dev/binder", O_RDWR);
....
bs->mapsize = mapsize;
bs->mapped = mmap(NULL, mapsize, PROT_READ, MAP_PRIVATE, bs->fd,0);
}
~~~
果然如此,有了之前所学习掌握的知识,这里真的就不难理解了。
3. 成为老大
怎么才成为系统中独一无二的manager了呢?manger的实现,如下面的代码所示:
**Binder.c**
~~~
int binder_become_context_manager(structbinder_state *bs)
{
//实现太简单了!这个0是否就是设置自己的handle呢?
returnioctl(bs->fd, BINDER_SET_CONTEXT_MGR, 0);
}
~~~
4. 死磕Binder
binder_loop是一个很尽责的函数。为什么这么说呢?因为它老是围绕着Binder设备转悠,实现代码如下所示:
**Binder.c**
~~~
/*
注意binder_handler参数,它是一个函数指针,binder_loop读取请求后将解析
这些请求,最后调用binder_handler完成最终的处理。
*/
void binder_loop(struct binder_state *bs,binder_handler func)
{
int res;
structbinder_write_read bwr;
readbuf[0] = BC_ENTER_LOOPER;
binder_write(bs, readbuf, sizeof(unsigned));
for (;;){//果然是循环
bwr.read_size = sizeof(readbuf);
bwr.read_consumed = 0;
bwr.read_buffer = (unsigned) readbuf;
res =ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
//接收到请求,交给binder_parse,最终会调用func来处理这些请求。
res = binder_parse(bs, 0, readbuf,bwr.read_consumed, func);
}
~~~
5. 集中处理
往binder_loop中传的那个函数指针是svcmgr_handler,它的代码如下所示:
**Service_manager.c**
~~~
int svcmgr_handler(struct binder_state *bs,structbinder_txn *txn,
struct binder_io *msg,structbinder_io *reply)
{
structsvcinfo *si;
uint16_t*s;
unsignedlen;
void*ptr;
// svcmgr_handle就是前面说的那个magic number,值为NULL。
//这里要比较target是不是自己。
if(txn->target != svcmgr_handle)
return -1;
s =bio_get_string16(msg, &len);
if ((len!= (sizeof(svcmgr_id) / 2)) ||
memcmp(svcmgr_id, s, sizeof(svcmgr_id))) {
return-1;
}
switch(txn->code) {
caseSVC_MGR_GET_SERVICE://得到某个service的信息,service用字符串表示。
caseSVC_MGR_CHECK_SERVICE:
s = bio_get_string16(msg, &len);//s是字符串表示的service名称。
ptr =do_find_service(bs, s, len);
if(!ptr)
break;
bio_put_ref(reply, ptr);
return 0;
caseSVC_MGR_ADD_SERVICE://对应addService请求
s =bio_get_string16(msg, &len);
ptr =bio_get_ref(msg);
if(do_add_service(bs, s, len, ptr, txn->sender_euid))
return -1;
break;
//得到当前系统已经注册的所有service的名字。
caseSVC_MGR_LIST_SERVICES: {
unsigned n = bio_get_uint32(msg);
si =svclist;
while((n-- > 0) && si)
si = si->next;
if(si) {
bio_put_string16(reply, si->name);
return 0;
}
return -1;
}
default:
return-1;
}
bio_put_uint32(reply,0);
return 0;
}
~~~
- 前言
- 第1章 阅读前的准备工作
- 1.1 系统架构
- 1.1.1 Android系统架构
- 1.1.2 本书的架构
- 1.2 搭建开发环境
- 1.2.1 下载源码
- 1.2.2 编译源码
- 1.3 工具介绍
- 1.3.1 Source Insight介绍
- 1.3.2 Busybox的使用
- 1.4 本章小结
- 第2章 深入理解JNI
- 2.1 JNI概述
- 2.2 学习JNI的实例:MediaScanner
- 2.3 Java层的MediaScanner分析
- 2.3.1 加载JNI库
- 2.3.2 Java的native函数和总结
- 2.4 JNI层MediaScanner的分析
- 2.4.1 注册JNI函数
- 2.4.2 数据类型转换
- 2.4.3 JNIEnv介绍
- 2.4.4 通过JNIEnv操作jobject
- 2.4.5 jstring介绍
- 2.4.6 JNI类型签名介绍
- 2.4.7 垃圾回收
- 2.4.8 JNI中的异常处理
- 2.5 本章小结
- 第3章 深入理解init
- 3.1 概述
- 3.2 init分析
- 3.2.1 解析配置文件
- 3.2.2 解析service
- 3.2.3 init控制service
- 3.2.4 属性服务
- 3.3 本章小结
- 第4章 深入理解zygote
- 4.1 概述
- 4.2 zygote分析
- 4.2.1 AppRuntime分析
- 4.2.2 Welcome to Java World
- 4.2.3 关于zygote的总结
- 4.3 SystemServer分析
- 4.3.1 SystemServer的诞生
- 4.3.2 SystemServer的重要使命
- 4.3.3 关于 SystemServer的总结
- 4.4 zygote的分裂
- 4.4.1 ActivityManagerService发送请求
- 4.4.2 有求必应之响应请求
- 4.4.3 关于zygote分裂的总结
- 4.5 拓展思考
- 4.5.1 虚拟机heapsize的限制
- 4.5.2 开机速度优化
- 4.5.3 Watchdog分析
- 4.6 本章小结
- 第5章 深入理解常见类
- 5.1 概述
- 5.2 以“三板斧”揭秘RefBase、sp和wp
- 5.2.1 第一板斧--初识影子对象
- 5.2.2 第二板斧--由弱生强
- 5.2.3 第三板斧--破解生死魔咒
- 5.2.4 轻量级的引用计数控制类LightRefBase
- 5.2.5 题外话-三板斧的来历
- 5.3 Thread类及常用同步类分析
- 5.3.1 一个变量引发的思考
- 5.3.2 常用同步类
- 5.4 Looper和Handler类分析
- 5.4.1 Looper类分析
- 5.4.2 Handler分析
- 5.4.3 Looper和Handler的同步关系
- 5.4.4 HandlerThread介绍
- 5.5 本章小结
- 第6章 深入理解Binder
- 6.1 概述
- 6.2 庖丁解MediaServer
- 6.2.1 MediaServer的入口函数
- 6.2.2 独一无二的ProcessState
- 6.2.3 时空穿越魔术-defaultServiceManager
- 6.2.4 注册MediaPlayerService
- 6.2.5 秋风扫落叶-StartThread Pool和join Thread Pool分析
- 6.2.6 你彻底明白了吗
- 6.3 服务总管ServiceManager
- 6.3.1 ServiceManager的原理
- 6.3.2 服务的注册
- 6.3.3 ServiceManager存在的意义
- 6.4 MediaPlayerService和它的Client
- 6.4.1 查询ServiceManager
- 6.4.2 子承父业
- 6.5 拓展思考
- 6.5.1 Binder和线程的关系
- 6.5.2 有人情味的讣告
- 6.5.3 匿名Service
- 6.6 学以致用
- 6.6.1 纯Native的Service
- 6.6.2 扶得起的“阿斗”(aidl)
- 6.7 本章小结
- 第7章 深入理解Audio系统
- 7.1 概述
- 7.2 AudioTrack的破解
- 7.2.1 用例介绍
- 7.2.2 AudioTrack(Java空间)分析
- 7.2.3 AudioTrack(Native空间)分析
- 7.2.4 关于AudioTrack的总结
- 7.3 AudioFlinger的破解
- 7.3.1 AudioFlinger的诞生
- 7.3.2 通过流程分析AudioFlinger
- 7.3.3 audio_track_cblk_t分析
- 7.3.4 关于AudioFlinger的总结
- 7.4 AudioPolicyService的破解
- 7.4.1 AudioPolicyService的创建
- 7.4.2 重回AudioTrack
- 7.4.3 声音路由切换实例分析
- 7.4.4 关于AudioPolicy的总结
- 7.5 拓展思考
- 7.5.1 DuplicatingThread破解
- 7.5.2 题外话
- 7.6 本章小结
- 第8章 深入理解Surface系统
- 8.1 概述
- 8.2 一个Activity的显示
- 8.2.1 Activity的创建
- 8.2.2 Activity的UI绘制
- 8.2.3 关于Activity的总结
- 8.3 初识Surface
- 8.3.1 和Surface有关的流程总结
- 8.3.2 Surface之乾坤大挪移
- 8.3.3 乾坤大挪移的JNI层分析
- 8.3.4 Surface和画图
- 8.3.5 初识Surface小结
- 8.4 深入分析Surface
- 8.4.1 与Surface相关的基础知识介绍
- 8.4.2 SurfaceComposerClient分析
- 8.4.3 SurfaceControl分析
- 8.4.4 writeToParcel和Surface对象的创建
- 8.4.5 lockCanvas和unlockCanvasAndPost分析
- 8.4.6 GraphicBuffer介绍
- 8.4.7 深入分析Surface的总结
- 8.5 SurfaceFlinger分析
- 8.5.1 SurfaceFlinger的诞生
- 8.5.2 SF工作线程分析
- 8.5.3 Transaction分析
- 8.5.4 关于SurfaceFlinger的总结
- 8.6 拓展思考
- 8.6.1 Surface系统的CB对象分析
- 8.6.2 ViewRoot的你问我答
- 8.6.3 LayerBuffer分析
- 8.7 本章小结
- 第9章 深入理解Vold和Rild
- 9.1 概述
- 9.2 Vold的原理与机制分析
- 9.2.1 Netlink和Uevent介绍
- 9.2.2 初识Vold
- 9.2.3 NetlinkManager模块分析
- 9.2.4 VolumeManager模块分析
- 9.2.5 CommandListener模块分析
- 9.2.6 Vold实例分析
- 9.2.7 关于Vold的总结
- 9.3 Rild的原理与机制分析
- 9.3.1 初识Rild
- 9.3.2 RIL_startEventLoop分析
- 9.3.3 RIL_Init分析
- 9.3.4 RIL_register分析
- 9.3.5 关于Rild main函数的总结
- 9.3.6 Rild实例分析
- 9.3.7 关于Rild的总结
- 9.4 拓展思考
- 9.4.1 嵌入式系统的存储知识介绍
- 9.4.2 Rild和Phone的改进探讨
- 9.5 本章小结
- 第10章 深入理解MediaScanner
- 10.1 概述
- 10.2 android.process.media分析
- 10.2.1 MSR模块分析
- 10.2.2 MSS模块分析
- 10.2.3 android.process.media媒体扫描工作的流程总结
- 10.3 MediaScanner分析
- 10.3.1 Java层分析
- 10.3.2 JNI层分析
- 10.3.3 PVMediaScanner分析
- 10.3.4 关于MediaScanner的总结
- 10.4 拓展思考
- 10.4.1 MediaScannerConnection介绍
- 10.4.2 我问你答
- 10.5 本章小结