前面讲解了AudioFlinger的工作方式,但AT和AF以及那个神秘的CB对象的工作原理,一直都还没能讲解。对于Audio系统来说,如果最终也解决不了这个,真会有当年岳飞在朱仙镇被十二道金牌召回时一样的悲愤心情。幸好我们没遇到秦桧,那就奋力穷追猛打,去解决这个CB对象吧。
解决问题要有好的对策。还是从AT和AF两端关于CB对象的调用流程开始分析,这一招可是屡试不爽啊!
1. AT端的流程
AT端作为数据的生产者,可称它为写者,它在CB对象中用user表示。它的调用流程是:
- 调用framesAvailable,看看是否有空余的可写空间。
- 调用buffer,获得写空间起始地址。
- 调用stepUser,更新user的位置。
一起来分析一下,由于这几个函数都相当简单,力争一气呵成。
先调用framesAvailable,看看当前剩余多少可写空间。假设是第一次进来,读者还在那等待数据,这样就不用考虑竞争等问题了,代码如下所示:
**AudioTrack.cpp::audio_track_cblk_t的framesAvailable()及相关**
~~~
uint32_t audio_track_cblk_t::framesAvailable()
{
Mutex::Autolock _l(lock);
returnframesAvailable_l();//调用framesAvailable_l
}
int32_t audio_track_cblk_t::framesAvailable_l()
{
uint32_t u = this->user; //当前写者位置,此时也为0
uint32_t s = this->server; //当前读者位置,此时为0
if(out) { //对于音频输出,out为1
uint32_t limit = (s < loopStart) ? s : loopStart;
//由于不设置播放端点,所以loopStart是初始值INT_MAX, limit=0
return limit + frameCount - u;
//返回0+frameCount-0,也就是数据缓冲的全部大小。假设frameCount=1024帧
}
}
~~~
然后,调用buffer获得起始位置,buffer返回一个地址。
**AudioTrack.cpp**
~~~
void* audio_track_cblk_t::buffer(uint32_toffset) const
{
//buffers是数据缓冲的起始位置,offset是计算出来的基于userBase的偏移。
//通过这种方式巧妙地把数据缓冲当做环形缓冲来处理
return(int8_t *)this->buffers + (offset - userBase) * this->frameSize;
}
~~~
当把数据写到缓冲后,调用stepUser。
**AudioTrack.cpp**
~~~
uint32_t audio_track_cblk_t::stepUser(uint32_tframeCount)
{
/*
framecount,表示写了多少帧,前面分配了1024帧,但写的数据可以比这个少
假设这一次写了512帧
*/
uint32_t u = this->user;//user位置还没更新,此时u=0;
u +=frameCount;//u更新了,u=512
......
/*
userBase还是初始值0。可惜只写了1024的一半,所以userBase加不了。
但这句话很重要,还记得前面的buffer调用吗?取数据地址的时候用offset-userBase,
一旦user位置到达缓冲的尾部,则userBase也会更新,这样offset-userBase的位置就会
回到缓冲的头部,从头到尾这么反复循环,不就是一个环形缓冲了吗?非常巧妙!
*/
if (u>= userBase + this->frameCount) {
userBase += this->frameCount;
}
this->user = u;//喔,user位置也更新为512了,但是useBase还是0
returnu;
}
~~~
假设写者这时因某种原因停止了写数据,而读者却会被唤醒。
2 AF端的流程
AF端作为数据的消费者,它在CB中的表示是server,可称它为读者。读者的使用流程是:
- 调用framesReady看是否有可读数据。
- 获得可读数据的起始位置,这个和上面的buffer调用基本一样,都是根据offset和serverBase来获得可读数据块的首地址。
- 调用stepServer更新读位置。
现在来分析framesReady和stepServer这两个函数,framesReady的代码如下所示:
**AudioTrack.cpp**
~~~
uint32_t audio_track_cblk_t::framesReady()
{
uint32_t u = this->user; //u为512
uint32_ts = this->server;//还没读呢,s为零
if(out) {
if(u < loopEnd) {
return u - s;//loopEnd也是INT_MAX,所以这里返回512,表示有512帧可读了
}else {
Mutex::Autolock _l(lock);
if (loopCount >= 0) {
return (loopEnd - loopStart)*loopCount + u - s;
} else {
return UINT_MAX;
}
}
} else{
return s - u;
}
}
~~~
可读数据地址的计算方法和前面的buffer调用一样,都是通过server和serverBase来计算的。接着看stepServer,代码如下所示:
**AudioTrack.cpp**
~~~
bool audio_track_cblk_t::stepServer(uint32_tframeCount)
{
status_t err;
err = lock.tryLock();
uint32_t s = this->server;
s +=frameCount; //读了512帧了,所以s=512
......
//没有设置循环播放,所以不走这个
if (s>= loopEnd) {
s =loopStart;
if (--loopCount == 0) {
loopEnd = UINT_MAX;
loopStart = UINT_MAX;
}
}
//和userBase一样的处理
if (s>= serverBase + this->frameCount) {
serverBase += this->frameCount;
}
this->server = s; //server为512了
cv.signal(); //读者读完了,触发一个同步信号,因为读者可能在等待可写的数据缓冲
lock.unlock();
returntrue;
}
~~~
3. 真的是环形缓冲?
满足下面场景的缓冲可称为环形缓冲(假设数据缓冲最大为1024帧):
- 写者先写1024帧,此后便无剩余空间可写。
- 读者读了前面的512帧,那么这512帧的数据空间就空余出来了。
- 所以,写者就可以重新利用这空余512帧的空间了。
关键是第三步,写者是否跟踪了读者的位置,并充分利用了读者已使用过的数据空间。所以得回头看看写者AT是否把这512帧利用了。
先看写者写完1024帧后的情况,stepUser中会有下面几句话:
~~~
if (u >= userBase + this->frameCount) {
//u为1024,userBase为0,frameCount为1024
userBase += this->frameCount;//好,userBase也为1024了
}
~~~
此时userBase更新为1024帧。再看写者获取可写空间的framesAvailable_l函数,按照以前的假设,应该返回512帧可写空间,代码如下所示:
**AudioTrack.cpp**
~~~
uint32_t audio_track_cblk_t::framesAvailable_l()
{
uint32_t u = this->user; //1024,写者上一次写完了整个1024帧空间
uint32_t s = this->server;//512,读者当前读到的位置
if(out) {
uint32_t limit = (s < loopStart) ? s : loopStart;
return limit + frameCount - u;//返回512
}
}
~~~
framesAvailable返回了512帧,但可写空间的地址是否是从头开始的呢?要是从其他地方开始的,情况就惨了。来看buffer中最后返回的可写空间地址:
~~~
return (int8_t *)this->buffers + (offset -userBase) * this->frameSize;
//offset是外界传入的基于userBase的一个偏移量,它的值是userBase+512,所以
//offset-userBase将得到从头开始的那段数据空间。真的是一个环形缓冲。
~~~
从上面的分析中看出,CB对象通过userBase和user等几个变量,将一段有限长度的线性缓冲变成了一段无限长的缓冲,这不正是环形缓冲的精髓吗!
- 前言
- 第1章 阅读前的准备工作
- 1.1 系统架构
- 1.1.1 Android系统架构
- 1.1.2 本书的架构
- 1.2 搭建开发环境
- 1.2.1 下载源码
- 1.2.2 编译源码
- 1.3 工具介绍
- 1.3.1 Source Insight介绍
- 1.3.2 Busybox的使用
- 1.4 本章小结
- 第2章 深入理解JNI
- 2.1 JNI概述
- 2.2 学习JNI的实例:MediaScanner
- 2.3 Java层的MediaScanner分析
- 2.3.1 加载JNI库
- 2.3.2 Java的native函数和总结
- 2.4 JNI层MediaScanner的分析
- 2.4.1 注册JNI函数
- 2.4.2 数据类型转换
- 2.4.3 JNIEnv介绍
- 2.4.4 通过JNIEnv操作jobject
- 2.4.5 jstring介绍
- 2.4.6 JNI类型签名介绍
- 2.4.7 垃圾回收
- 2.4.8 JNI中的异常处理
- 2.5 本章小结
- 第3章 深入理解init
- 3.1 概述
- 3.2 init分析
- 3.2.1 解析配置文件
- 3.2.2 解析service
- 3.2.3 init控制service
- 3.2.4 属性服务
- 3.3 本章小结
- 第4章 深入理解zygote
- 4.1 概述
- 4.2 zygote分析
- 4.2.1 AppRuntime分析
- 4.2.2 Welcome to Java World
- 4.2.3 关于zygote的总结
- 4.3 SystemServer分析
- 4.3.1 SystemServer的诞生
- 4.3.2 SystemServer的重要使命
- 4.3.3 关于 SystemServer的总结
- 4.4 zygote的分裂
- 4.4.1 ActivityManagerService发送请求
- 4.4.2 有求必应之响应请求
- 4.4.3 关于zygote分裂的总结
- 4.5 拓展思考
- 4.5.1 虚拟机heapsize的限制
- 4.5.2 开机速度优化
- 4.5.3 Watchdog分析
- 4.6 本章小结
- 第5章 深入理解常见类
- 5.1 概述
- 5.2 以“三板斧”揭秘RefBase、sp和wp
- 5.2.1 第一板斧--初识影子对象
- 5.2.2 第二板斧--由弱生强
- 5.2.3 第三板斧--破解生死魔咒
- 5.2.4 轻量级的引用计数控制类LightRefBase
- 5.2.5 题外话-三板斧的来历
- 5.3 Thread类及常用同步类分析
- 5.3.1 一个变量引发的思考
- 5.3.2 常用同步类
- 5.4 Looper和Handler类分析
- 5.4.1 Looper类分析
- 5.4.2 Handler分析
- 5.4.3 Looper和Handler的同步关系
- 5.4.4 HandlerThread介绍
- 5.5 本章小结
- 第6章 深入理解Binder
- 6.1 概述
- 6.2 庖丁解MediaServer
- 6.2.1 MediaServer的入口函数
- 6.2.2 独一无二的ProcessState
- 6.2.3 时空穿越魔术-defaultServiceManager
- 6.2.4 注册MediaPlayerService
- 6.2.5 秋风扫落叶-StartThread Pool和join Thread Pool分析
- 6.2.6 你彻底明白了吗
- 6.3 服务总管ServiceManager
- 6.3.1 ServiceManager的原理
- 6.3.2 服务的注册
- 6.3.3 ServiceManager存在的意义
- 6.4 MediaPlayerService和它的Client
- 6.4.1 查询ServiceManager
- 6.4.2 子承父业
- 6.5 拓展思考
- 6.5.1 Binder和线程的关系
- 6.5.2 有人情味的讣告
- 6.5.3 匿名Service
- 6.6 学以致用
- 6.6.1 纯Native的Service
- 6.6.2 扶得起的“阿斗”(aidl)
- 6.7 本章小结
- 第7章 深入理解Audio系统
- 7.1 概述
- 7.2 AudioTrack的破解
- 7.2.1 用例介绍
- 7.2.2 AudioTrack(Java空间)分析
- 7.2.3 AudioTrack(Native空间)分析
- 7.2.4 关于AudioTrack的总结
- 7.3 AudioFlinger的破解
- 7.3.1 AudioFlinger的诞生
- 7.3.2 通过流程分析AudioFlinger
- 7.3.3 audio_track_cblk_t分析
- 7.3.4 关于AudioFlinger的总结
- 7.4 AudioPolicyService的破解
- 7.4.1 AudioPolicyService的创建
- 7.4.2 重回AudioTrack
- 7.4.3 声音路由切换实例分析
- 7.4.4 关于AudioPolicy的总结
- 7.5 拓展思考
- 7.5.1 DuplicatingThread破解
- 7.5.2 题外话
- 7.6 本章小结
- 第8章 深入理解Surface系统
- 8.1 概述
- 8.2 一个Activity的显示
- 8.2.1 Activity的创建
- 8.2.2 Activity的UI绘制
- 8.2.3 关于Activity的总结
- 8.3 初识Surface
- 8.3.1 和Surface有关的流程总结
- 8.3.2 Surface之乾坤大挪移
- 8.3.3 乾坤大挪移的JNI层分析
- 8.3.4 Surface和画图
- 8.3.5 初识Surface小结
- 8.4 深入分析Surface
- 8.4.1 与Surface相关的基础知识介绍
- 8.4.2 SurfaceComposerClient分析
- 8.4.3 SurfaceControl分析
- 8.4.4 writeToParcel和Surface对象的创建
- 8.4.5 lockCanvas和unlockCanvasAndPost分析
- 8.4.6 GraphicBuffer介绍
- 8.4.7 深入分析Surface的总结
- 8.5 SurfaceFlinger分析
- 8.5.1 SurfaceFlinger的诞生
- 8.5.2 SF工作线程分析
- 8.5.3 Transaction分析
- 8.5.4 关于SurfaceFlinger的总结
- 8.6 拓展思考
- 8.6.1 Surface系统的CB对象分析
- 8.6.2 ViewRoot的你问我答
- 8.6.3 LayerBuffer分析
- 8.7 本章小结
- 第9章 深入理解Vold和Rild
- 9.1 概述
- 9.2 Vold的原理与机制分析
- 9.2.1 Netlink和Uevent介绍
- 9.2.2 初识Vold
- 9.2.3 NetlinkManager模块分析
- 9.2.4 VolumeManager模块分析
- 9.2.5 CommandListener模块分析
- 9.2.6 Vold实例分析
- 9.2.7 关于Vold的总结
- 9.3 Rild的原理与机制分析
- 9.3.1 初识Rild
- 9.3.2 RIL_startEventLoop分析
- 9.3.3 RIL_Init分析
- 9.3.4 RIL_register分析
- 9.3.5 关于Rild main函数的总结
- 9.3.6 Rild实例分析
- 9.3.7 关于Rild的总结
- 9.4 拓展思考
- 9.4.1 嵌入式系统的存储知识介绍
- 9.4.2 Rild和Phone的改进探讨
- 9.5 本章小结
- 第10章 深入理解MediaScanner
- 10.1 概述
- 10.2 android.process.media分析
- 10.2.1 MSR模块分析
- 10.2.2 MSS模块分析
- 10.2.3 android.process.media媒体扫描工作的流程总结
- 10.3 MediaScanner分析
- 10.3.1 Java层分析
- 10.3.2 JNI层分析
- 10.3.3 PVMediaScanner分析
- 10.3.4 关于MediaScanner的总结
- 10.4 拓展思考
- 10.4.1 MediaScannerConnection介绍
- 10.4.2 我问你答
- 10.5 本章小结