AudioFlinger驻留于MediaServer进程中。回顾一下它的代码,如下所示:
**Main_MediaServer.cpp**
~~~
int main(int argc, char** argv)
{
sp<ProcessState> proc(ProcessState::self());
sp<IServiceManager>sm = defaultServiceManager();
....
//很好,AF和APS都驻留在这个进程
AudioFlinger::instantiate();
AudioPolicyService::instantiate();
....
ProcessState::self()->startThreadPool();
IPCThreadState::self()->joinThreadPool();
}
~~~
1. AudioFlinger的构造
**AudioFlinger.cpp**
~~~
void AudioFlinger::instantiate() {
defaultServiceManager()->addService( //把AF添加到ServiceManager中
String16("media.audio_flinger"), new AudioFlinger());
}
~~~
再来看它的构造函数:
**AudioFlinger.cpp**
~~~
AudioFlinger::AudioFlinger(): BnAudioFlinger(),
mAudioHardware(0), //代表Audio硬件的HAL对象
mMasterVolume(1.0f),mMasterMute(false), mNextThreadId(0)
{
mHardwareStatus= AUDIO_HW_IDLE;
//创建代表Audio硬件的HAL对象
mAudioHardware = AudioHardwareInterface::create();
mHardwareStatus = AUDIO_HW_INIT;
if(mAudioHardware->initCheck() == NO_ERROR) {
//设置系统初始化的一些值,有一部分通过Audio HAL设置到硬件中
setMode(AudioSystem::MODE_NORMAL);
setMasterVolume(1.0f);
setMasterMute(false);
}
}
~~~
AudioHardwareInterface是Android对代表Audio硬件的封装,属于HAL层。HAL层的具体功能,由各个硬件厂商根据所选硬件的情况来实现,多以动态库的形式提供。这里,简单分析一下Audio HAL的接口,至于其具体实现就不做过多的探讨了。
2. AudioHardwareInterface介绍
AudioHardwareInterface接口的定义在AudioHardwareInterface.h中。先看看它。
**AudioHardwareInterface.h::AudioHardwareInterface声明**
~~~
class AudioHardwareInterface
{
public:
virtual ~AudioHardwareInterface() {}
//用于检查硬件是否初始化成功,返回的错误码定义在include/utils/Errors.h
virtual status_t initCheck() =0;
//设置通话音量,范围从0到1.0
virtual status_t setVoiceVolume(float volume) = 0;
/*
设置除通话音量外的其他所有音频流类型的音量,范围从0到1.0,如果硬件不支持的话,
这个功能会由软件层的混音器完成
*/
virtual status_t setMasterVolume(float volume) = 0;
/*
设置模式,NORMAL的状态为普通模式,RINGTONE表示来电模式(这时听到的声音是来电铃声)
IN_CALL表示通话模式(这时听到的声音是手机通话过程中的语音)
*/
virtual status_t setMode(intmode) = 0;
// 和麦克相关
virtual status_t setMicMute(bool state) = 0;
virtual status_t getMicMute(bool* state) = 0;
// 设置/获取配置参数,采用key/value的组织方式
virtual status_t setParameters(const String8& keyValuePairs) = 0;
virtual String8 getParameters(const String8& keys) = 0;
// 根据传入的参数得到输入缓冲的大小,返回0表示其中某个参数的值Audio HAL不支持
virtualsize_t getInputBufferSize(uint32_tsampleRate, int format,
int channelCount) = 0;
/*下面这几个函数非常重要 */
/*
openOutputStream:创建音频输出流对象(相当于打开音频输出设备)
AF可以往其中write数据,指针型参数将返回该音频输出流支持的类型、声道数、采样率等
*/
virtual AudioStreamOut* openOutputStream(
uint32_tdevices,
int *format=0,
uint32_t*channels=0,
uint32_t*sampleRate=0,
status_t*status=0) = 0;
//关闭音频输出流
virtual void closeOutputStream(AudioStreamOut* out) = 0;
/* 创建音频输入流对象(相当于打开音频输入设备),AF可以read数据*/
virtual AudioStreamIn* openInputStream(
uint32_tdevices,
int *format,
uint32_t*channels,
uint32_t *sampleRate,
status_t*status,
AudioSystem::audio_in_acoustics acoustics) = 0;
virtual void closeInputStream(AudioStreamIn* in) =0;
//关闭音频输入流
virtual status_t dumpState(int fd, const Vector<String16>&args) = 0;
//静态create函数,使用设计模式中的工厂模式,具体返回的对象由厂商根据硬件的情况决定
staticAudioHardwareInterface* create();
......
};
~~~
根据上面的代码,可以得出以下结论:
- AudioHardwareInterface管理音频输出设备对象(AudioStreamOut)和音频输入设备对象(AudioStreamIn)的创建。
- 通过AudioHardwareInterface可设置音频系统的一些参数。
图7-6表示AudioHardwareInterface和音频输入输出对象之间的关系以及它们的派生关系:
:-: ![](http://img.blog.csdn.net/20150802160531741?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center)
图7-6 AudioHardwareInterface关系图
从图7-6中还可看出:
* 音频输出/输入对象均支持设置参数(由setParameters完成)。
>[info] **说明**:AudioHardwareInterface最重要的功能是创建AudioStreamOut 和AudioStreamIn,它们分别代表音频输出设备和音频输入设备。从这个角度说,是AudioHardwareInterface管理着系统中所有的音频设备。Android引入的HAL层,大大简化了应用层的工作,否则不管是使用libasound(AlSA提供的用户空间库)还是ioctl来控制音频设备,都会非常麻烦。
- 前言
- 第1章 阅读前的准备工作
- 1.1 系统架构
- 1.1.1 Android系统架构
- 1.1.2 本书的架构
- 1.2 搭建开发环境
- 1.2.1 下载源码
- 1.2.2 编译源码
- 1.3 工具介绍
- 1.3.1 Source Insight介绍
- 1.3.2 Busybox的使用
- 1.4 本章小结
- 第2章 深入理解JNI
- 2.1 JNI概述
- 2.2 学习JNI的实例:MediaScanner
- 2.3 Java层的MediaScanner分析
- 2.3.1 加载JNI库
- 2.3.2 Java的native函数和总结
- 2.4 JNI层MediaScanner的分析
- 2.4.1 注册JNI函数
- 2.4.2 数据类型转换
- 2.4.3 JNIEnv介绍
- 2.4.4 通过JNIEnv操作jobject
- 2.4.5 jstring介绍
- 2.4.6 JNI类型签名介绍
- 2.4.7 垃圾回收
- 2.4.8 JNI中的异常处理
- 2.5 本章小结
- 第3章 深入理解init
- 3.1 概述
- 3.2 init分析
- 3.2.1 解析配置文件
- 3.2.2 解析service
- 3.2.3 init控制service
- 3.2.4 属性服务
- 3.3 本章小结
- 第4章 深入理解zygote
- 4.1 概述
- 4.2 zygote分析
- 4.2.1 AppRuntime分析
- 4.2.2 Welcome to Java World
- 4.2.3 关于zygote的总结
- 4.3 SystemServer分析
- 4.3.1 SystemServer的诞生
- 4.3.2 SystemServer的重要使命
- 4.3.3 关于 SystemServer的总结
- 4.4 zygote的分裂
- 4.4.1 ActivityManagerService发送请求
- 4.4.2 有求必应之响应请求
- 4.4.3 关于zygote分裂的总结
- 4.5 拓展思考
- 4.5.1 虚拟机heapsize的限制
- 4.5.2 开机速度优化
- 4.5.3 Watchdog分析
- 4.6 本章小结
- 第5章 深入理解常见类
- 5.1 概述
- 5.2 以“三板斧”揭秘RefBase、sp和wp
- 5.2.1 第一板斧--初识影子对象
- 5.2.2 第二板斧--由弱生强
- 5.2.3 第三板斧--破解生死魔咒
- 5.2.4 轻量级的引用计数控制类LightRefBase
- 5.2.5 题外话-三板斧的来历
- 5.3 Thread类及常用同步类分析
- 5.3.1 一个变量引发的思考
- 5.3.2 常用同步类
- 5.4 Looper和Handler类分析
- 5.4.1 Looper类分析
- 5.4.2 Handler分析
- 5.4.3 Looper和Handler的同步关系
- 5.4.4 HandlerThread介绍
- 5.5 本章小结
- 第6章 深入理解Binder
- 6.1 概述
- 6.2 庖丁解MediaServer
- 6.2.1 MediaServer的入口函数
- 6.2.2 独一无二的ProcessState
- 6.2.3 时空穿越魔术-defaultServiceManager
- 6.2.4 注册MediaPlayerService
- 6.2.5 秋风扫落叶-StartThread Pool和join Thread Pool分析
- 6.2.6 你彻底明白了吗
- 6.3 服务总管ServiceManager
- 6.3.1 ServiceManager的原理
- 6.3.2 服务的注册
- 6.3.3 ServiceManager存在的意义
- 6.4 MediaPlayerService和它的Client
- 6.4.1 查询ServiceManager
- 6.4.2 子承父业
- 6.5 拓展思考
- 6.5.1 Binder和线程的关系
- 6.5.2 有人情味的讣告
- 6.5.3 匿名Service
- 6.6 学以致用
- 6.6.1 纯Native的Service
- 6.6.2 扶得起的“阿斗”(aidl)
- 6.7 本章小结
- 第7章 深入理解Audio系统
- 7.1 概述
- 7.2 AudioTrack的破解
- 7.2.1 用例介绍
- 7.2.2 AudioTrack(Java空间)分析
- 7.2.3 AudioTrack(Native空间)分析
- 7.2.4 关于AudioTrack的总结
- 7.3 AudioFlinger的破解
- 7.3.1 AudioFlinger的诞生
- 7.3.2 通过流程分析AudioFlinger
- 7.3.3 audio_track_cblk_t分析
- 7.3.4 关于AudioFlinger的总结
- 7.4 AudioPolicyService的破解
- 7.4.1 AudioPolicyService的创建
- 7.4.2 重回AudioTrack
- 7.4.3 声音路由切换实例分析
- 7.4.4 关于AudioPolicy的总结
- 7.5 拓展思考
- 7.5.1 DuplicatingThread破解
- 7.5.2 题外话
- 7.6 本章小结
- 第8章 深入理解Surface系统
- 8.1 概述
- 8.2 一个Activity的显示
- 8.2.1 Activity的创建
- 8.2.2 Activity的UI绘制
- 8.2.3 关于Activity的总结
- 8.3 初识Surface
- 8.3.1 和Surface有关的流程总结
- 8.3.2 Surface之乾坤大挪移
- 8.3.3 乾坤大挪移的JNI层分析
- 8.3.4 Surface和画图
- 8.3.5 初识Surface小结
- 8.4 深入分析Surface
- 8.4.1 与Surface相关的基础知识介绍
- 8.4.2 SurfaceComposerClient分析
- 8.4.3 SurfaceControl分析
- 8.4.4 writeToParcel和Surface对象的创建
- 8.4.5 lockCanvas和unlockCanvasAndPost分析
- 8.4.6 GraphicBuffer介绍
- 8.4.7 深入分析Surface的总结
- 8.5 SurfaceFlinger分析
- 8.5.1 SurfaceFlinger的诞生
- 8.5.2 SF工作线程分析
- 8.5.3 Transaction分析
- 8.5.4 关于SurfaceFlinger的总结
- 8.6 拓展思考
- 8.6.1 Surface系统的CB对象分析
- 8.6.2 ViewRoot的你问我答
- 8.6.3 LayerBuffer分析
- 8.7 本章小结
- 第9章 深入理解Vold和Rild
- 9.1 概述
- 9.2 Vold的原理与机制分析
- 9.2.1 Netlink和Uevent介绍
- 9.2.2 初识Vold
- 9.2.3 NetlinkManager模块分析
- 9.2.4 VolumeManager模块分析
- 9.2.5 CommandListener模块分析
- 9.2.6 Vold实例分析
- 9.2.7 关于Vold的总结
- 9.3 Rild的原理与机制分析
- 9.3.1 初识Rild
- 9.3.2 RIL_startEventLoop分析
- 9.3.3 RIL_Init分析
- 9.3.4 RIL_register分析
- 9.3.5 关于Rild main函数的总结
- 9.3.6 Rild实例分析
- 9.3.7 关于Rild的总结
- 9.4 拓展思考
- 9.4.1 嵌入式系统的存储知识介绍
- 9.4.2 Rild和Phone的改进探讨
- 9.5 本章小结
- 第10章 深入理解MediaScanner
- 10.1 概述
- 10.2 android.process.media分析
- 10.2.1 MSR模块分析
- 10.2.2 MSS模块分析
- 10.2.3 android.process.media媒体扫描工作的流程总结
- 10.3 MediaScanner分析
- 10.3.1 Java层分析
- 10.3.2 JNI层分析
- 10.3.3 PVMediaScanner分析
- 10.3.4 关于MediaScanner的总结
- 10.4 拓展思考
- 10.4.1 MediaScannerConnection介绍
- 10.4.2 我问你答
- 10.5 本章小结