从乾坤大挪移的知识可知,前面创建的所有对象都在WindowManagerService所在的进程system_server中,而writeToParcel则需要把一些信息打包到Parcel后,发送到Activity所在的进程。到底哪些内容需要回传给Activity所在的进程呢?
后文将Activity所在的进程简称为Activity端。
1. writeToParcel分析
writeToParcel比较简单,就是把一些信息写到Parcel中去。代码如下所示:
**SurfaceControl.cpp**
~~~
status_t SurfaceControl::writeSurfaceToParcel(
const sp<SurfaceControl>& control, Parcel* parcel)
{
uint32_t flags = 0;
uint32_t format = 0;
SurfaceID token = -1;
uint32_t identity = 0;
uint32_t width = 0;
uint32_t height = 0;
sp<SurfaceComposerClient> client;
sp<ISurface> sur;
if(SurfaceControl::isValid(control)) {
token = control->mToken;
identity= control->mIdentity;
client = control->mClient;
sur = control->mSurface;
width = control->mWidth;
height = control->mHeight;
format = control->mFormat;
flags = control->mFlags;
}
//SurfaceComposerClient的信息需要传递到Activity端,这样客户端那边会构造一个
//SurfaceComposerClient对象
parcel->writeStrongBinder(client!=0 ? client->connection() : NULL);
//把ISurface对象信息也写到Parcel中,这样Activity端那边也会构造一个ISurface对象
parcel->writeStrongBinder(sur!=0?sur->asBinder(): NULL);
parcel->writeInt32(token);
parcel->writeInt32(identity);
parcel->writeInt32(width);
parcel->writeInt32(height);
parcel->writeInt32(format);
parcel->writeInt32(flags);
returnNO_ERROR;
}
~~~
Parce包发到Activity端后,readFromParcel将根据这个Parcel包构造一个Native的Surface对象,一起来看相关代码。
2. 分析Native的Surface创建过程
**android_view_Surface.cpp**
~~~
static void Surface_readFromParcel(
JNIEnv* env, jobject clazz, jobject argParcel)
{
Parcel* parcel = (Parcel*)env->GetIntField( argParcel, no.native_parcel);
const sp<Surface>& control(getSurface(env,clazz));
//根据服务端的parcel信息来构造客户端的Surface
sp<Surface> rhs = new Surface(*parcel);
if(!Surface::isSameSurface(control, rhs)) {
setSurface(env, clazz, rhs);
}
}
~~~
Native的Surface是怎么利用这个Parcel包的?代码如下所示:
**Surface.cpp**
~~~
Surface::Surface(const Parcel& parcel)
:mBufferMapper(GraphicBufferMapper::get()),
mSharedBufferClient(NULL)
{
/*
Surface定义了一个mBuffers变量,它是一个sp<GraphicBuffer>的二元数组,也就是说Surface也存在二个GraphicBuffer,而之前在创建Layer的时候也有两个GraphicBuffer,难道一共有四个GraphicBuffer?这个问题,后面再解答。
*/
sp<IBinder> clientBinder =parcel.readStrongBinder();
//得到ISurface的Bp端BpSurface。
mSurface =interface_cast<ISurface>(parcel.readStrongBinder());
mToken = parcel.readInt32();
mIdentity = parcel.readInt32();
mWidth = parcel.readInt32();
mHeight = parcel.readInt32();
mFormat = parcel.readInt32();
mFlags = parcel.readInt32();
if (clientBinder != NULL) {
/*
根据ISurfaceFlingerClient对象构造一个SurfaceComposerClient对象,注意我们
现在位于Activity端,这里还没有创建SurfaceComposerClient对象,所以需要创建一个
*/
mClient = SurfaceComposerClient::clientForConnection(clientBinder);
//SharedBuffer家族的最后一员ShardBufferClient终于出现了。
mSharedBufferClient = new SharedBufferClient(
mClient->mControl, mToken, 2,mIdentity);
}
init();//做一些初始化工作。
}
~~~
在Surface创建完后,得到什么了呢?看图8-18就可知道:
:-: ![](http://img.blog.csdn.net/20150802162907740?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center)
图8-18 Native Surface的示意图
上图很清晰地说明:
- ShardBuffer家族依托共享内存结构SharedClient与它共同组成了Surface系统生产/消费协调的中枢控制机构,它在SF端的代表是SharedBufferServer,在Activity端的代表是SharedBufferClient。
- Native的Surface将和SF中的SurfaceLayer建立Binder联系。
另外,图中还特意画出了承载数据的GraphicBuffer数组,在代码的注释中也针对GraphicBuffer提出了一个问题:Surface中有两个GraphicBuffer,Layer也有两个,一共就有四个GraphicBuffer了,可是为什么这里只画出两个呢?
答案是,咱们不是有共享内存吗?这四个GraphicBuffer其实操纵的是同一段共享内存,所以为了简单,就只画了两个GraphicBuffer。在8.4.7节再介绍GraphicBuffer的故事。
下面,来看中枢控制机构的SharedBuffer家族。
3. SharedBuffer家族介绍
(1)SharedBuffer家族成员
SharedBuffer是一个家族名称,它包括多少成员呢?来看SharedBuffer的家族图谱,如图8-19所示:
:-: ![](http://img.blog.csdn.net/20150802162819704?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center)
图8-19 SharedBuffer家族介绍
从上图可以知道:
- XXXCondition、XXXUpdate等都是内部类,它们主要是用来更新读写位置的。不过这些操作,为什么要通过类来封装呢?因为SharedBuffer的很多操作都使用了C++中的Function Object(函数对象),而这些内部类的实例就是函数对象。函数对象是什么?它怎么使用?对此,在以后的分析中会介绍。
(2)SharedBuffer家族和SharedClient的关系
前面介绍过,SharedBufferServer和SharedBufferClient控制的其实只是SharedBufferStack数组中的一个,下面通过SharedBufferBase的构造函数,来看是否如此。
**SharedBufferStack.cpp**
~~~
SharedBufferBase::SharedBufferBase(SharedClient*sharedClient,
int surface, int num, int32_t identity)
: mSharedClient(sharedClient),
mSharedStack(sharedClient->surfaces+ surface),
mNumBuffers(num), //根据前面PageFlipping的知识可知,num值为2
mIdentity(identity)
{
/*
上面的赋值语句中最重要的是第二句:
mSharedStack(sharedClient->surfaces +surface)
这条语句使得这个SharedBufferXXX对象,和SharedClient中SharedBufferStack数组
的第surface个元素建立了关系
*/
}
~~~
4. Native Surface总结
至此,Activity端Java的Surface对象,终于和一个Native Surface对象挂上了钩,并且这个Native Surface还准备好了绘图所需的一切,其中包括:
- 两个GraphicBuffer,这就是PageFlipping所需要的FrontBuffer和BackBuffer。
- SharedBufferServer和SharedBufferClient结构,这两个结构将用于生产/消费的过程控制。
- 一个ISurface对象,这个对象连接着SF中的一个SurfaceLayer对象。
- 一个SurfaceComposerClient对象,这个对象连接着SF中的一个BClient对象。
资源都已经准备好了,可以开始绘制UI了。下面,分析两个关键的函数lockCanvas和unlockCanvasAndPost。
- 前言
- 第1章 阅读前的准备工作
- 1.1 系统架构
- 1.1.1 Android系统架构
- 1.1.2 本书的架构
- 1.2 搭建开发环境
- 1.2.1 下载源码
- 1.2.2 编译源码
- 1.3 工具介绍
- 1.3.1 Source Insight介绍
- 1.3.2 Busybox的使用
- 1.4 本章小结
- 第2章 深入理解JNI
- 2.1 JNI概述
- 2.2 学习JNI的实例:MediaScanner
- 2.3 Java层的MediaScanner分析
- 2.3.1 加载JNI库
- 2.3.2 Java的native函数和总结
- 2.4 JNI层MediaScanner的分析
- 2.4.1 注册JNI函数
- 2.4.2 数据类型转换
- 2.4.3 JNIEnv介绍
- 2.4.4 通过JNIEnv操作jobject
- 2.4.5 jstring介绍
- 2.4.6 JNI类型签名介绍
- 2.4.7 垃圾回收
- 2.4.8 JNI中的异常处理
- 2.5 本章小结
- 第3章 深入理解init
- 3.1 概述
- 3.2 init分析
- 3.2.1 解析配置文件
- 3.2.2 解析service
- 3.2.3 init控制service
- 3.2.4 属性服务
- 3.3 本章小结
- 第4章 深入理解zygote
- 4.1 概述
- 4.2 zygote分析
- 4.2.1 AppRuntime分析
- 4.2.2 Welcome to Java World
- 4.2.3 关于zygote的总结
- 4.3 SystemServer分析
- 4.3.1 SystemServer的诞生
- 4.3.2 SystemServer的重要使命
- 4.3.3 关于 SystemServer的总结
- 4.4 zygote的分裂
- 4.4.1 ActivityManagerService发送请求
- 4.4.2 有求必应之响应请求
- 4.4.3 关于zygote分裂的总结
- 4.5 拓展思考
- 4.5.1 虚拟机heapsize的限制
- 4.5.2 开机速度优化
- 4.5.3 Watchdog分析
- 4.6 本章小结
- 第5章 深入理解常见类
- 5.1 概述
- 5.2 以“三板斧”揭秘RefBase、sp和wp
- 5.2.1 第一板斧--初识影子对象
- 5.2.2 第二板斧--由弱生强
- 5.2.3 第三板斧--破解生死魔咒
- 5.2.4 轻量级的引用计数控制类LightRefBase
- 5.2.5 题外话-三板斧的来历
- 5.3 Thread类及常用同步类分析
- 5.3.1 一个变量引发的思考
- 5.3.2 常用同步类
- 5.4 Looper和Handler类分析
- 5.4.1 Looper类分析
- 5.4.2 Handler分析
- 5.4.3 Looper和Handler的同步关系
- 5.4.4 HandlerThread介绍
- 5.5 本章小结
- 第6章 深入理解Binder
- 6.1 概述
- 6.2 庖丁解MediaServer
- 6.2.1 MediaServer的入口函数
- 6.2.2 独一无二的ProcessState
- 6.2.3 时空穿越魔术-defaultServiceManager
- 6.2.4 注册MediaPlayerService
- 6.2.5 秋风扫落叶-StartThread Pool和join Thread Pool分析
- 6.2.6 你彻底明白了吗
- 6.3 服务总管ServiceManager
- 6.3.1 ServiceManager的原理
- 6.3.2 服务的注册
- 6.3.3 ServiceManager存在的意义
- 6.4 MediaPlayerService和它的Client
- 6.4.1 查询ServiceManager
- 6.4.2 子承父业
- 6.5 拓展思考
- 6.5.1 Binder和线程的关系
- 6.5.2 有人情味的讣告
- 6.5.3 匿名Service
- 6.6 学以致用
- 6.6.1 纯Native的Service
- 6.6.2 扶得起的“阿斗”(aidl)
- 6.7 本章小结
- 第7章 深入理解Audio系统
- 7.1 概述
- 7.2 AudioTrack的破解
- 7.2.1 用例介绍
- 7.2.2 AudioTrack(Java空间)分析
- 7.2.3 AudioTrack(Native空间)分析
- 7.2.4 关于AudioTrack的总结
- 7.3 AudioFlinger的破解
- 7.3.1 AudioFlinger的诞生
- 7.3.2 通过流程分析AudioFlinger
- 7.3.3 audio_track_cblk_t分析
- 7.3.4 关于AudioFlinger的总结
- 7.4 AudioPolicyService的破解
- 7.4.1 AudioPolicyService的创建
- 7.4.2 重回AudioTrack
- 7.4.3 声音路由切换实例分析
- 7.4.4 关于AudioPolicy的总结
- 7.5 拓展思考
- 7.5.1 DuplicatingThread破解
- 7.5.2 题外话
- 7.6 本章小结
- 第8章 深入理解Surface系统
- 8.1 概述
- 8.2 一个Activity的显示
- 8.2.1 Activity的创建
- 8.2.2 Activity的UI绘制
- 8.2.3 关于Activity的总结
- 8.3 初识Surface
- 8.3.1 和Surface有关的流程总结
- 8.3.2 Surface之乾坤大挪移
- 8.3.3 乾坤大挪移的JNI层分析
- 8.3.4 Surface和画图
- 8.3.5 初识Surface小结
- 8.4 深入分析Surface
- 8.4.1 与Surface相关的基础知识介绍
- 8.4.2 SurfaceComposerClient分析
- 8.4.3 SurfaceControl分析
- 8.4.4 writeToParcel和Surface对象的创建
- 8.4.5 lockCanvas和unlockCanvasAndPost分析
- 8.4.6 GraphicBuffer介绍
- 8.4.7 深入分析Surface的总结
- 8.5 SurfaceFlinger分析
- 8.5.1 SurfaceFlinger的诞生
- 8.5.2 SF工作线程分析
- 8.5.3 Transaction分析
- 8.5.4 关于SurfaceFlinger的总结
- 8.6 拓展思考
- 8.6.1 Surface系统的CB对象分析
- 8.6.2 ViewRoot的你问我答
- 8.6.3 LayerBuffer分析
- 8.7 本章小结
- 第9章 深入理解Vold和Rild
- 9.1 概述
- 9.2 Vold的原理与机制分析
- 9.2.1 Netlink和Uevent介绍
- 9.2.2 初识Vold
- 9.2.3 NetlinkManager模块分析
- 9.2.4 VolumeManager模块分析
- 9.2.5 CommandListener模块分析
- 9.2.6 Vold实例分析
- 9.2.7 关于Vold的总结
- 9.3 Rild的原理与机制分析
- 9.3.1 初识Rild
- 9.3.2 RIL_startEventLoop分析
- 9.3.3 RIL_Init分析
- 9.3.4 RIL_register分析
- 9.3.5 关于Rild main函数的总结
- 9.3.6 Rild实例分析
- 9.3.7 关于Rild的总结
- 9.4 拓展思考
- 9.4.1 嵌入式系统的存储知识介绍
- 9.4.2 Rild和Phone的改进探讨
- 9.5 本章小结
- 第10章 深入理解MediaScanner
- 10.1 概述
- 10.2 android.process.media分析
- 10.2.1 MSR模块分析
- 10.2.2 MSS模块分析
- 10.2.3 android.process.media媒体扫描工作的流程总结
- 10.3 MediaScanner分析
- 10.3.1 Java层分析
- 10.3.2 JNI层分析
- 10.3.3 PVMediaScanner分析
- 10.3.4 关于MediaScanner的总结
- 10.4 拓展思考
- 10.4.1 MediaScannerConnection介绍
- 10.4.2 我问你答
- 10.5 本章小结