1. 乾坤大挪移的表象
relayout的函数是一个跨进程的调用,由WMS完成实际处理。先到ViewRoot中看看调用方的用法,代码如下所示:
**ViewRoot.java**
~~~
private intrelayoutWindow(WindowManager.LayoutParams params,
int viewVisibility, boolean insetsPending)
throws RemoteException {
int relayoutResult = sWindowSession.relayout(
mWindow, params,
(int) (mView.mMeasuredWidth * appScale + 0.5f),
(int) (mView.mMeasuredHeight * appScale + 0.5f),
viewVisibility, insetsPending, mWinFrame,
mPendingContentInsets, mPendingVisibleInsets,
mPendingConfiguration, mSurface);//mSurface传了进去
......
return relayoutResult;
}
~~~
再看接收方的处理。它在WMS的Session中,代码如下所示:
**WindowManagerService.java::Session**
~~~
public int relayout(IWindow window,WindowManager.LayoutParams attrs,
int requestedWidth, int requestedHeight, int viewFlags,
boolean insetsPending, Rect outFrame, Rect outContentInsets,
Rect outVisibleInsets, Configuration outConfig,
Surface outSurface) {
//注意最后这个参数的名字,叫outSurface
//调用外部类对象的relayoutWindow
returnrelayoutWindow(this, window, attrs,
requestedWidth,requestedHeight, viewFlags, insetsPending,
outFrame, outContentInsets,outVisibleInsets, outConfig,
outSurface);
}
~~~
**WindowManagerService.java**
~~~
public int relayoutWindow(Session session,IWindow client,
WindowManager.LayoutParams attrs, int requestedWidth,
int requestedHeight, int viewVisibility, boolean insetsPending,
Rect outFrame, Rect outContentInsets, Rect outVisibleInsets,
Configuration outConfig, SurfaceoutSurface){
.....
try {
//win就是WinState,这里将创建一个本地的Surface对象
Surfacesurface = win.createSurfaceLocked();
if(surface != null) {
//先创建一个本地surface,然后在outSurface的对象上调用copyFrom
//将本地Surface的信息拷贝到outSurface中,为什么要这么麻烦呢?
outSurface.copyFrom(surface);
......
}
~~~
**WindowManagerService.java::WindowState**
~~~
Surface createSurfaceLocked() {
......
try {
//mSurfaceSession就是在Session上创建的SurfaceSession对象
//这里,以它为参数,构造一个新的Surface对象
mSurface = new Surface(
mSession.mSurfaceSession, mSession.mPid,
mAttrs.getTitle().toString(),
0, w, h, mAttrs.format, flags);
}
Surface.openTransaction();//打开一个事务处理
......
Surface.closeTransaction();//关闭一个事务处理。关于事务处理以后再分析
......
}
~~~
上面的代码段好像有点混乱。用图8-7来表示一下这个流程:
:-: ![](http://img.blog.csdn.net/20150802162309594?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center)
图8-7 复杂的Surface创建流程
根据图8-7可知:
- WMS中的Surface是乾坤中的乾,它的构造使用了带SurfaceSession参数的构造函数。
- ViewRoot中的Surface是乾坤中的坤,它的构造使用了无参构造函数。
- copyFrom就是挪移,它将乾中的Surface信息,拷贝到坤中的Surface即outSurface里。
要是觉得乾坤大挪移就是这两三下,未免就太小看它了。为彻底揭示这期间的复杂过程,我们将使用必杀技——aidl工具。
2. 揭秘Surface的乾坤大挪移
aidl可以把XXX.aidl文件转换成对应的Java文件。刚才所说的乾坤大挪移发生在ViewRoot调用IWindowSession的relayout函数中,它在IWindowSession.adil中的定义如下:
**IWindowSesson.aidl**
~~~
nterface IWindowSession {
......
intrelayout(IWindow window, in WindowManager.LayoutParams attrs,
int requestedWidth, int requestedHeight, int viewVisibility,
boolean insetsPending, out Rect outFrame, out Rect outContentInsets,
out Rect outVisibleInsets, out Configuration outConfig,
out Surface outSurface);
~~~
下面,拿必杀技aidl来编译一下这个aidl文件,其使用方法如下:
~~~
在命令行下可以输入:
aidl –Ie:\froyo\source\frameworks\base\core\java\ -Ie:\froyo\source\frameworks\base\Graphics\java e:\froyo\source\frameworks\base\core\java\android\view\IWindowSession.aidltest.java
新生成的Java文件叫test.java。其中,-I参数指定include目录,例如aidl文件中使用了别的Java文件中的类,所以需要指定这些Java文件所在的目录。
~~~
先看ViewRoot这个客户端生成的代码,如下所示:
**test.java::Bp端::relayout**
~~~
public int relayout(android.view.IWindow window,
android.view.WindowManager.LayoutParams attrs,
int requestedWidth, intrequestedHeight,
int viewVisibility, boolean insetsPending,
android.graphics.Rect outFrame,
android.graphics.Rect outContentInsets,
android.graphics.Rect outVisibleInsets,
android.content.res.Configuration outConfig,
android.view.Surface outSurface)//outSurface是第11个参数
throwsandroid.os.RemoteException
{
android.os.Parcel_data = android.os.Parcel.obtain();
android.os.Parcel_reply = android.os.Parcel.obtain();
int_result;
try {
_data.writeInterfaceToken(DESCRIPTOR);
_data.writeStrongBinder((((window!=null))?(window.asBinder()):(null)));
if((attrs!=null)) {
_data.writeInt(1);
attrs.writeToParcel(_data,0);
}
else {
_data.writeInt(0);
}
_data.writeInt(requestedWidth);
_data.writeInt(requestedHeight);
_data.writeInt(viewVisibility);
_data.writeInt(((insetsPending)?(1):(0)));
//奇怪,outSurface的信息没有写到请求包_data中,就直接发送请求消息了
mRemote.transact(Stub.TRANSACTION_relayout,_data, _reply, 0);
_reply.readException();
_result= _reply.readInt();
if((0!=_reply.readInt())) {
outFrame.readFromParcel(_reply);
}
....
if((0!=_reply.readInt())) {
outSurface.readFromParcel(_reply);//从Parcel中读取信息来填充outSurface
}
}
......
return_result;
}
~~~
奇怪!ViewRoot调用requestlayout竟然没有把outSurface信息传进去,这么说,服务端收到的Surface对象应该就是空吧?那怎么能调用copyFrom呢?还是来看服务端的处理,先看首先收到消息的onTransact函数,代码如下所示:
**test.java::Bn端::onTransact**
~~~
public boolean onTransact(int code,android.os.Parcel data,
android.os.Parcelreply, int flags)
throwsandroid.os.RemoteException
{
switch(code)
{
caseTRANSACTION_relayout:
{
data.enforceInterface(DESCRIPTOR);
android.view.IWindow_arg0;
android.view.Surface_arg10;
//刚才讲了,Surface信息并没有传过来,那么在relayOut中看到的outSurface是怎么
//出来的呢?看下面这句可知,原来在服务端这边竟然new了一个新的Surface!!!
_arg10= new android.view.Surface();
int_result = this.relayout(_arg0, _arg1, _arg2, _arg3, _arg4,
_arg5,_arg6, _arg7, _arg8, _arg9, _arg10);
reply.writeNoException();
reply.writeInt(_result);
//_arg10就是调用copyFrom的那个outSurface,那怎么传到客户端呢?
if((_arg10!=null)) {
reply.writeInt(1);
//调用Surface的writeToParcel,把信息写到reply包中。
//注意最后一个参数为PARCELABLE_WRITE_RETURN_VALUE
_arg10.writeToParcel(reply,
android.os.Parcelable.PARCELABLE_WRITE_RETURN_VALUE);
}
}
......
returntrue;
}
~~~
看完这个,会让人有点毛骨悚然。我最开始一直在JNI文件中寻找大挪移的踪迹,但有几个关键点始终不能明白,万不得已就使用了这个aidl必杀技,于是终于揭露出其真相了。
3. 乾坤大挪移的真相
这里,总结一下乾坤大挪移的整个过程,如图8-8表示:
:-: ![](http://img.blog.csdn.net/20150802162245458?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center)
图8-8 乾坤大挪移的真面目
上图非常清晰地列出了乾坤大挪移的过程,我们可结合代码来加深理解。
>[info] **注意**,这里,将BpWindowSession作为了IWindowSessionBinder在客户端的代表。
- 前言
- 第1章 阅读前的准备工作
- 1.1 系统架构
- 1.1.1 Android系统架构
- 1.1.2 本书的架构
- 1.2 搭建开发环境
- 1.2.1 下载源码
- 1.2.2 编译源码
- 1.3 工具介绍
- 1.3.1 Source Insight介绍
- 1.3.2 Busybox的使用
- 1.4 本章小结
- 第2章 深入理解JNI
- 2.1 JNI概述
- 2.2 学习JNI的实例:MediaScanner
- 2.3 Java层的MediaScanner分析
- 2.3.1 加载JNI库
- 2.3.2 Java的native函数和总结
- 2.4 JNI层MediaScanner的分析
- 2.4.1 注册JNI函数
- 2.4.2 数据类型转换
- 2.4.3 JNIEnv介绍
- 2.4.4 通过JNIEnv操作jobject
- 2.4.5 jstring介绍
- 2.4.6 JNI类型签名介绍
- 2.4.7 垃圾回收
- 2.4.8 JNI中的异常处理
- 2.5 本章小结
- 第3章 深入理解init
- 3.1 概述
- 3.2 init分析
- 3.2.1 解析配置文件
- 3.2.2 解析service
- 3.2.3 init控制service
- 3.2.4 属性服务
- 3.3 本章小结
- 第4章 深入理解zygote
- 4.1 概述
- 4.2 zygote分析
- 4.2.1 AppRuntime分析
- 4.2.2 Welcome to Java World
- 4.2.3 关于zygote的总结
- 4.3 SystemServer分析
- 4.3.1 SystemServer的诞生
- 4.3.2 SystemServer的重要使命
- 4.3.3 关于 SystemServer的总结
- 4.4 zygote的分裂
- 4.4.1 ActivityManagerService发送请求
- 4.4.2 有求必应之响应请求
- 4.4.3 关于zygote分裂的总结
- 4.5 拓展思考
- 4.5.1 虚拟机heapsize的限制
- 4.5.2 开机速度优化
- 4.5.3 Watchdog分析
- 4.6 本章小结
- 第5章 深入理解常见类
- 5.1 概述
- 5.2 以“三板斧”揭秘RefBase、sp和wp
- 5.2.1 第一板斧--初识影子对象
- 5.2.2 第二板斧--由弱生强
- 5.2.3 第三板斧--破解生死魔咒
- 5.2.4 轻量级的引用计数控制类LightRefBase
- 5.2.5 题外话-三板斧的来历
- 5.3 Thread类及常用同步类分析
- 5.3.1 一个变量引发的思考
- 5.3.2 常用同步类
- 5.4 Looper和Handler类分析
- 5.4.1 Looper类分析
- 5.4.2 Handler分析
- 5.4.3 Looper和Handler的同步关系
- 5.4.4 HandlerThread介绍
- 5.5 本章小结
- 第6章 深入理解Binder
- 6.1 概述
- 6.2 庖丁解MediaServer
- 6.2.1 MediaServer的入口函数
- 6.2.2 独一无二的ProcessState
- 6.2.3 时空穿越魔术-defaultServiceManager
- 6.2.4 注册MediaPlayerService
- 6.2.5 秋风扫落叶-StartThread Pool和join Thread Pool分析
- 6.2.6 你彻底明白了吗
- 6.3 服务总管ServiceManager
- 6.3.1 ServiceManager的原理
- 6.3.2 服务的注册
- 6.3.3 ServiceManager存在的意义
- 6.4 MediaPlayerService和它的Client
- 6.4.1 查询ServiceManager
- 6.4.2 子承父业
- 6.5 拓展思考
- 6.5.1 Binder和线程的关系
- 6.5.2 有人情味的讣告
- 6.5.3 匿名Service
- 6.6 学以致用
- 6.6.1 纯Native的Service
- 6.6.2 扶得起的“阿斗”(aidl)
- 6.7 本章小结
- 第7章 深入理解Audio系统
- 7.1 概述
- 7.2 AudioTrack的破解
- 7.2.1 用例介绍
- 7.2.2 AudioTrack(Java空间)分析
- 7.2.3 AudioTrack(Native空间)分析
- 7.2.4 关于AudioTrack的总结
- 7.3 AudioFlinger的破解
- 7.3.1 AudioFlinger的诞生
- 7.3.2 通过流程分析AudioFlinger
- 7.3.3 audio_track_cblk_t分析
- 7.3.4 关于AudioFlinger的总结
- 7.4 AudioPolicyService的破解
- 7.4.1 AudioPolicyService的创建
- 7.4.2 重回AudioTrack
- 7.4.3 声音路由切换实例分析
- 7.4.4 关于AudioPolicy的总结
- 7.5 拓展思考
- 7.5.1 DuplicatingThread破解
- 7.5.2 题外话
- 7.6 本章小结
- 第8章 深入理解Surface系统
- 8.1 概述
- 8.2 一个Activity的显示
- 8.2.1 Activity的创建
- 8.2.2 Activity的UI绘制
- 8.2.3 关于Activity的总结
- 8.3 初识Surface
- 8.3.1 和Surface有关的流程总结
- 8.3.2 Surface之乾坤大挪移
- 8.3.3 乾坤大挪移的JNI层分析
- 8.3.4 Surface和画图
- 8.3.5 初识Surface小结
- 8.4 深入分析Surface
- 8.4.1 与Surface相关的基础知识介绍
- 8.4.2 SurfaceComposerClient分析
- 8.4.3 SurfaceControl分析
- 8.4.4 writeToParcel和Surface对象的创建
- 8.4.5 lockCanvas和unlockCanvasAndPost分析
- 8.4.6 GraphicBuffer介绍
- 8.4.7 深入分析Surface的总结
- 8.5 SurfaceFlinger分析
- 8.5.1 SurfaceFlinger的诞生
- 8.5.2 SF工作线程分析
- 8.5.3 Transaction分析
- 8.5.4 关于SurfaceFlinger的总结
- 8.6 拓展思考
- 8.6.1 Surface系统的CB对象分析
- 8.6.2 ViewRoot的你问我答
- 8.6.3 LayerBuffer分析
- 8.7 本章小结
- 第9章 深入理解Vold和Rild
- 9.1 概述
- 9.2 Vold的原理与机制分析
- 9.2.1 Netlink和Uevent介绍
- 9.2.2 初识Vold
- 9.2.3 NetlinkManager模块分析
- 9.2.4 VolumeManager模块分析
- 9.2.5 CommandListener模块分析
- 9.2.6 Vold实例分析
- 9.2.7 关于Vold的总结
- 9.3 Rild的原理与机制分析
- 9.3.1 初识Rild
- 9.3.2 RIL_startEventLoop分析
- 9.3.3 RIL_Init分析
- 9.3.4 RIL_register分析
- 9.3.5 关于Rild main函数的总结
- 9.3.6 Rild实例分析
- 9.3.7 关于Rild的总结
- 9.4 拓展思考
- 9.4.1 嵌入式系统的存储知识介绍
- 9.4.2 Rild和Phone的改进探讨
- 9.5 本章小结
- 第10章 深入理解MediaScanner
- 10.1 概述
- 10.2 android.process.media分析
- 10.2.1 MSR模块分析
- 10.2.2 MSS模块分析
- 10.2.3 android.process.media媒体扫描工作的流程总结
- 10.3 MediaScanner分析
- 10.3.1 Java层分析
- 10.3.2 JNI层分析
- 10.3.3 PVMediaScanner分析
- 10.3.4 关于MediaScanner的总结
- 10.4 拓展思考
- 10.4.1 MediaScannerConnection介绍
- 10.4.2 我问你答
- 10.5 本章小结