# Subarray Sum Closest
### Source
- lintcode: [(139) Subarray Sum Closest](http://www.lintcode.com/en/problem/subarray-sum-closest/)
~~~
Given an integer array, find a subarray with sum closest to zero.
Return the indexes of the first number and last number.
Example
Given [-3, 1, 1, -3, 5], return [0, 2], [1, 3], [1, 1], [2, 2] or [0, 4]
Challenge
O(nlogn) time
~~~
### 题解
题 [Zero Sum Subarray | Data Structure and Algorithm](http://algorithm.yuanbin.me/zh-cn/integer_array/zero_sum_subarray.html) 的变形题,由于要求的子串和不一定,故哈希表的方法不再适用,使用解法4 - 排序即可在 O(nlogn)O(n \log n)O(nlogn) 内解决。具体步骤如下:
1. 首先遍历一次数组求得子串和。
1. 对子串和排序。
1. 逐个比较相邻两项差值的绝对值,返回差值绝对值最小的两项。
### C++
~~~
class Solution {
public:
/**
* @param nums: A list of integers
* @return: A list of integers includes the index of the first number
* and the index of the last number
*/
vector<int> subarraySumClosest(vector<int> nums){
vector<int> result;
if (nums.empty()) {
return result;
}
const int num_size = nums.size();
vector<pair<int, int> > sum_index(num_size + 1);
for (int i = 0; i < num_size; ++i) {
sum_index[i + 1].first = sum_index[i].first + nums[i];
sum_index[i + 1].second = i + 1;
}
sort(sum_index.begin(), sum_index.end());
int min_diff = INT_MAX;
int closest_index = 1;
for (int i = 1; i < num_size + 1; ++i) {
int sum_diff = abs(sum_index[i].first - sum_index[i - 1].first);
if (min_diff > sum_diff) {
min_diff = sum_diff;
closest_index = i;
}
}
int left_index = min(sum_index[closest_index - 1].second,\
sum_index[closest_index].second);
int right_index = -1 + max(sum_index[closest_index - 1].second,\
sum_index[closest_index].second);
result.push_back(left_index);
result.push_back(right_index);
return result;
}
};
~~~
### 源码分析
为避免对单个子串和是否为最小情形的单独考虑,我们可以采取类似链表 dummy 节点的方法规避,简化代码实现。故初始化`sum_index`时需要`num_size + 1`个。这里为避免 vector 反复扩充空间降低运行效率,使用`resize`一步到位。`sum_index`即最后结果中`left_index`和`right_index`等边界可以结合简单例子分析确定。
### 复杂度分析
1. 遍历一次求得子串和时间复杂度为 O(n)O(n)O(n), 空间复杂度为 O(n+1)O(n+1)O(n+1).
1. 对子串和排序,平均时间复杂度为 O(nlogn)O(n \log n)O(nlogn).
1. 遍历排序后的子串和数组,时间复杂度为 O(n)O(n)O(n).
总的时间复杂度为 O(nlogn)O(n \log n)O(nlogn), 空间复杂度为 O(n)O(n)O(n).
### 扩展
- [algorithm - How to find the subarray that has sum closest to zero or a certain value t in O(nlogn) - Stack Overflow](http://stackoverflow.com/questions/16388930/how-to-find-the-subarray-that-has-sum-closest-to-zero-or-a-certain-value-t-in-o)
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume