# Matrix Zigzag Traversal
### Source
- lintcode: [(185) Matrix Zigzag Traversal](http://www.lintcode.com/en/problem/matrix-zigzag-traversal/)
~~~
Given a matrix of m x n elements (m rows, n columns),
return all elements of the matrix in ZigZag-order.
Example
Given a matrix:
[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9,10, 11, 12]
]
return [1, 2, 5, 9, 6, 3, 4, 7, 10, 11, 8, 12]
~~~
### 题解
按之字形遍历矩阵,纯粹找下标规律。以题中所给范例为例,设`(x, y)`为矩阵坐标,按之字形遍历有如下规律:
~~~
(0, 0)
(0, 1), (1, 0)
(2, 0), (1, 1), (0, 2)
(0, 3), (1, 2), (2, 1)
(2, 2), (1, 3)
(2, 3)
~~~
可以发现其中每一行的坐标之和为常数,坐标和为奇数时 x 递增,为偶数时 x 递减。
### Java - valid matrix index second
~~~
public class Solution {
/**
* @param matrix: a matrix of integers
* @return: an array of integers
*/
public int[] printZMatrix(int[][] matrix) {
if (matrix == null || matrix.length == 0) return null;
int m = matrix.length - 1, n = matrix[0].length - 1;
int[] result = new int[(m + 1) * (n + 1)];
int index = 0;
for (int i = 0; i <= m + n; i++) {
if (i % 2 == 0) {
for (int x = i; x >= 0; x--) {
// valid matrix index
if ((x <= m) && (i - x <= n)) {
result[index] = matrix[x][i - x];
index++;
}
}
} else {
for (int x = 0; x <= i; x++) {
if ((x <= m) && (i - x <= n)) {
result[index] = matrix[x][i - x];
index++;
}
}
}
}
return result;
}
}
~~~
### Java - valid matrix index first
~~~
public class Solution {
/**
* @param matrix: a matrix of integers
* @return: an array of integers
*/
public int[] printZMatrix(int[][] matrix) {
if (matrix == null || matrix.length == 0) return null;
int m = matrix.length - 1, n = matrix[0].length - 1;
int[] result = new int[(m + 1) * (n + 1)];
int index = 0;
for (int i = 0; i <= m + n; i++) {
int upperBoundx = Math.min(i, m); // x <= m
int lowerBoundx = Math.max(0, i - n); // lower bound i - x(y) <= n
int upperBoundy = Math.min(i, n); // y <= n
int lowerBoundy = Math.max(0, i - m); // i - y(x) <= m
if (i % 2 == 0) {
// column increment
for (int y = lowerBoundy; y <= upperBoundy; y++) {
result[index] = matrix[i - y][y];
index++;
}
} else {
// row increment
for (int x = lowerBoundx; x <= upperBoundx; x++) {
result[index] = matrix[x][i - x];
index++;
}
}
}
return result;
}
}
~~~
### 源码分析
矩阵行列和分奇偶讨论,奇数时行递增,偶数时列递增,一种是先循环再判断索引是否合法,另一种是先取的索引边界。
### 复杂度分析
后判断索引是否合法的实现遍历次数为 1+2+...+(m+n)=O((m+n)2)1 + 2 + ... + (m + n) = O((m+n)^2)1+2+...+(m+n)=O((m+n)2), 首先确定上下界的每个元素遍历一次,时间复杂度 O(m⋅n)O(m \cdot n)O(m⋅n). 空间复杂度都是 O(1)O(1)O(1).
### Reference
- [LintCode/matrix-zigzag-traversal.cpp at master · kamyu104/LintCode](https://github.com/kamyu104/LintCode/blob/master/C++/matrix-zigzag-traversal.cpp)
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume