# Find the Missing Number
### Source
- lintcode: [(196) Find the Missing Number](http://www.lintcode.com/en/problem/find-the-missing-number/)
- [Find the Missing Number - GeeksforGeeks](http://www.geeksforgeeks.org/find-the-missing-number/)
### Problem
Given an array contains *N* numbers of 0 .. *N*, find which number doesn't exist in the array.
#### Example
Given *N* = `3` and the array `[0, 1, 3]`, return `2`.
#### Challenge
Do it in-place with O(1)O(1)O(1) extra memory and O(n)O(n)O(n) time.
### 题解1 - 位运算
和找单数的题类似,这里我们不妨试试位运算中异或的思路。最开始自己想到的是利用相邻项异或结果看是否会有惊喜,然而发现 `a^(a+1) != a^a + a^1` 之后眼泪掉下来... 如果按照找单数的做法,首先对数组所有元素异或,得到数`x1`, 现在的问题是如何利用`x1`得到缺失的数,由于找单数中其他数都是成对出现的,故最后的结果即是单数,这里每个数都是单数,怎么办呢?我们现在再来分析下如果没有缺失数的话会是怎样呢?假设所有元素异或得到数`x2`, 数`x1`和`x2`有什么差异呢?假设缺失的数是`x0`,那么容易知道`x2 = x1 ^ x0`, 相当于现在已知`x1`和`x2`,要求`x0`. 根据 [Bit Manipulation](http://algorithm.yuanbin.me/zh-cn/basics_misc/bit_manipulation.html) 中总结的交换律,`x0 = x1 ^ x2`.
位运算的题往往比较灵活,需要好好利用常用等式变换。
### Java
~~~
public class Solution {
/**
* @param nums: an array of integers
* @return: an integer
*/
public int findMissing(int[] nums) {
if (nums == null || nums.length == 0) return -1;
// get xor from 0 to N excluding missing number
int x1 = 0;
for (int i : nums) {
x1 ^= i;
}
// get xor from 0 to N
int x2 = 0;
for (int i = 0; i <= nums.length; i++) {
x2 ^= i;
}
// missing = x1 ^ x2;
return x1 ^ x2;
}
}
~~~
### 源码分析
略
### 复杂度分析
遍历原数组和 N+1大小的数组,时间复杂度 O(n)O(n)O(n), 空间复杂度 O(1)O(1)O(1).
### 题解2 - 桶排序
非常简单直观的想法——排序后检查缺失元素,但是此题中要求时间复杂度为 O(n)O(n)O(n), 因此如果一定要用排序来做,那一定是使用非比较排序如桶排序或者计数排序。题中另一提示则是要求只使用 O(1)O(1)O(1) 的额外空间,那么这就是在提示我们应该使用原地交换。根据题意,元素应无重复,可考虑使用桶排,索引和值一一对应即可。第一重 for 循环遍历原数组,内循环使用 while, 调整索引处对应的值,直至相等或者索引越界为止,for 循环结束时桶排结束。最后再遍历一次数组找出缺失元素。
初次接触这种题还是比较难想到使用桶排这种思想的,尤其是利用索引和值一一对应这一特性找出缺失元素,另外此题在实际实现时不容易做到 bug-free, while 循环处容易出现死循环。
### Java
~~~
public class Solution {
/**
* @param nums: an array of integers
* @return: an integer
*/
public int findMissing(int[] nums) {
if (nums == null || nums.length == 0) return -1;
bucketSort(nums);
// find missing number
for (int i = 0; i < nums.length; i++) {
if (nums[i] != i) {
return i;
}
}
return nums.length;
}
private void bucketSort(int[] nums) {
for (int i = 0; i < nums.length; i++) {
while (nums[i] != i) {
// ignore nums[i] == nums.length
if (nums[i] == nums.length) {
break;
}
int nextNum = nums[nums[i]];
nums[nums[i]] = nums[i];
nums[i] = nextNum;
}
}
}
}
~~~
### 源码分析
难点一在于正确实现桶排,难点二在于数组元素中最大值 N 如何处理。N 有三种可能:
1. N 不在原数组中,故最后应该返回 N
1. N 在原数组中,但不在数组中的最后一个元素
1. N 在原数组中且在数组最后一个元素
其中情况1在遍历桶排后的数组时无返回,最后返回 N.
其中2和3在 while 循环处均会遇到 break 跳出,即当前这个索引所对应的值要么最后还是 N,要么就是和索引相同的值。如果最后还是 N, 也就意味着原数组中缺失的是其他值,如果最后被覆盖掉,那么桶排后的数组不会出现 N, 且缺失的一定是 N 之前的数。
综上,这里的实现无论 N 出现在哪个索引都能正确返回缺失值。实现上还是比较巧妙的,所以说在没做过这类题时要在短时间内 bug-free 比较难,当然也可能是我比较菜...
另外一个难点在于如何保证或者证明 while 一定不会出现死循环,可以这么理解,如果 while 条件不成立且未出现`nums.length`这个元素,那么就一定会使得一个元素正确入桶,又因为没有重复元素出现,故一定不会出现死循环。
### 复杂度分析
桶排时间复杂度 O(n)O(n)O(n), 空间复杂度 O(1)O(1)O(1). 遍历原数组找缺失数时间复杂度 O(n)O(n)O(n). 故总的时间复杂度为 O(n)O(n)O(n), 空间复杂度 O(1)O(1)O(1).
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume