# Insert Node in a Binary Search Tree
### Source
- lintcode: [(85) Insert Node in a Binary Search Tree](http://www.lintcode.com/en/problem/insert-node-in-a-binary-search-tree/)
~~~
Given a binary search tree and a new tree node, insert the node into the tree. You should keep the tree still be a valid binary search tree.
Example
Given binary search tree as follow:
2
/ \
1 4
/
3
after Insert node 6, the tree should be:
2
/ \
1 4
/ \
3 6
Challenge
Do it without recursion
~~~
### 题解 - 递归
二叉树的题使用递归自然是最好理解的,代码也简洁易懂,缺点就是递归调用时栈空间容易溢出,故实际实现中一般使用迭代替代递归,性能更佳嘛。不过迭代的缺点就是代码量稍(很)大,逻辑也可能不是那么好懂。
既然确定使用递归,那么接下来就应该考虑具体的实现问题了。在递归的具体实现中,主要考虑如下两点:
1. 基本条件/终止条件 - 返回值需斟酌。
1. 递归步/条件递归 - 能使原始问题收敛。
首先来找找递归步,根据二叉查找树的定义,若插入节点的值若大于当前节点的值,则继续与当前节点的右子树的值进行比较;反之则继续与当前节点的左子树的值进行比较。题目的要求是返回最终二叉搜索树的根节点,从以上递归步的描述中似乎还难以对应到实际代码,这时不妨分析下终止条件。
有了递归步,终止条件也就水到渠成了,若当前节点为空时,即返回结果。问题是——返回什么结果?当前节点为空时,说明应该将「插入节点」插入到上一个遍历节点的左子节点或右子节点。对应到程序代码中即为`root->right = node`或者`root->left = node`. 也就是说递归步使用`root->right/left = func(...)`即可。
### C++ Recursion
~~~
/**
* forked from http://www.jiuzhang.com/solutions/insert-node-in-binary-search-tree/
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param root: The root of the binary search tree.
* @param node: insert this node into the binary search tree
* @return: The root of the new binary search tree.
*/
TreeNode* insertNode(TreeNode* root, TreeNode* node) {
if (NULL == root) {
return node;
}
if (node->val <= root->val) {
root->left = insertNode(root->left, node);
} else {
root->right = insertNode(root->right, node);
}
return root;
}
};
~~~
### Java Recursion
~~~
public class Solution {
/**
* @param root: The root of the binary search tree.
* @param node: insert this node into the binary search tree
* @return: The root of the new binary search tree.
*/
public TreeNode insertNode(TreeNode root, TreeNode node) {
if (root == null) {
return node;
}
if (root.val > node.val) {
root.left = insertNode(root.left, node);
} else {
root.right = insertNode(root.right, node);
}
return root;
}
}
~~~
### 题解 - 迭代
看过了以上递归版的题解,对于这个题来说,将递归转化为迭代的思路也是非常清晰易懂的。迭代比较当前节点的值和插入节点的值,到了二叉树的最后一层时选择是链接至左子结点还是右子节点。
### C++
~~~
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param root: The root of the binary search tree.
* @param node: insert this node into the binary search tree
* @return: The root of the new binary search tree.
*/
TreeNode* insertNode(TreeNode* root, TreeNode* node) {
if (NULL == root) {
return node;
}
TreeNode* tempNode = root;
while (NULL != tempNode) {
if (node->val <= tempNode->val) {
if (NULL == tempNode->left) {
tempNode->left = node;
return root;
}
tempNode = tempNode->left;
} else {
if (NULL == tempNode->right) {
tempNode->right = node;
return root;
}
tempNode = tempNode->right;
}
}
return root;
}
};
~~~
### 源码分析
在`NULL == tempNode->right`或者`NULL == tempNode->left`时需要在链接完`node`后立即返回`root`,避免死循环。
### Java Iterative
~~~
public class Solution {
/**
* @param root: The root of the binary search tree.
* @param node: insert this node into the binary search tree
* @return: The root of the new binary search tree.
*/
public TreeNode insertNode(TreeNode root, TreeNode node) {
// write your code here
if (root == null) return node;
if (node == null) return root;
TreeNode rootcopy = root;
while (root != null) {
if (root.val <= node.val && root.right == null) {
root.right = node;
break;
}
else if (root.val > node.val && root.left == null) {
root.left = node;
break;
}
else if(root.val <= node.val) root = root.right;
else root = root.left;
}
return rootcopy;
}
}
~~~
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume