# Product of Array Exclude Itself
### Source
- lintcode: [(50) Product of Array Exclude Itself](http://www.lintcode.com/en/problem/product-of-array-exclude-itself/)
- GeeksforGeeks: [A Product Array Puzzle - GeeksforGeeks](http://www.geeksforgeeks.org/a-product-array-puzzle/)
~~~
Given an integers array A.
Define B[i] = A[0] * ... * A[i-1] * A[i+1] * ... * A[n-1], calculate B WITHOUT divide operation.
Example
For A=[1, 2, 3], return [6, 3, 2].
~~~
### 题解1 - 左右分治
根据题意,有 result[i]=left[i]⋅right[i]result[i] = left[i] \cdot right[i]result[i]=left[i]⋅right[i], 其中 left[i]=∏j=0i−1A[j]left[i] = \prod _{j = 0} ^{i - 1} A[j]left[i]=∏j=0i−1A[j], right[i]=∏j=i+1n−1A[j]right[i] = \prod _{j = i + 1} ^{n - 1} A[j]right[i]=∏j=i+1n−1A[j]. 即将最后的乘积分为两部分求解,首先求得左半部分的值,然后求得右半部分的值。最后将左右两半部分乘起来即为解。
### C++
~~~
class Solution {
public:
/**
* @param A: Given an integers array A
* @return: A long long array B and B[i]= A[0] * ... * A[i-1] * A[i+1] * ... * A[n-1]
*/
vector<long long> productExcludeItself(vector<int> &nums) {
const int nums_size = nums.size();
vector<long long> result(nums_size, 1);
if (nums.empty() || nums_size == 1) {
return result;
}
vector<long long> left(nums_size, 1);
vector<long long> right(nums_size, 1);
for (int i = 1; i != nums_size; ++i) {
left[i] = left[i - 1] * nums[i - 1];
right[nums_size - i - 1] = right[nums_size - i] * nums[nums_size - i];
}
for (int i = 0; i != nums_size; ++i) {
result[i] = left[i] * right[i];
}
return result;
}
};
~~~
### 源码分析
一次`for`循环求出左右部分的连乘积,下标的确定可使用简单例子辅助分析。
### 复杂度分析
两次`for`循环,时间复杂度 O(n)O(n)O(n). 使用了左右两半部分辅助空间,空间复杂度 O(2n)O(2n)O(2n).
### 题解2 - 原地求积
题解1中使用了左右两个辅助数组,但是仔细瞅瞅其实可以发现完全可以在最终返回结果`result`基础上原地计算左右两半部分的积。
### C++
~~~
class Solution {
public:
/**
* @param A: Given an integers array A
* @return: A long long array B and B[i]= A[0] * ... * A[i-1] * A[i+1] * ... * A[n-1]
*/
vector<long long> productExcludeItself(vector<int> &nums) {
const int nums_size = nums.size();
vector<long long> result(nums_size, 1);
// solve the left part first
for (int i = 1; i < nums_size; ++i) {
result[i] = result[i - 1] * nums[i - 1];
}
// solve the right part
long long temp = 1;
for (int i = nums_size - 1; i >= 0; --i) {
result[i] *= temp;
temp *= nums[i];
}
return result;
}
};
~~~
### 源码分析
计算左半部分的递推式不用改,计算右半部分的乘积时由于会有左半部分值的干扰,故使用`temp`保存连乘的值。注意`temp`需要使用`long long`, 否则会溢出。
### 复杂度分析
时间复杂度同上,空间复杂度为 O(1)O(1)O(1).
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume