企业🤖AI智能体构建引擎,智能编排和调试,一键部署,支持私有化部署方案 广告
# Unique Binary Search Trees II ### Source - leetcode: [Unique Binary Search Trees II | LeetCode OJ](https://leetcode.com/problems/unique-binary-search-trees-ii/) - lintcode: [(164) Unique Binary Search Trees II](http://www.lintcode.com/en/problem/unique-binary-search-trees-ii/) ~~~ Given n, generate all structurally unique BST's (binary search trees) that store values 1...n. Example Given n = 3, your program should return all 5 unique BST's shown below. 1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3 ~~~ ### 题解 题 [Unique Binary Search Trees](http://algorithm.yuanbin.me/zh-cn/math_and_bit_manipulation/unique_binary_search_trees.html) 的升级版,这道题要求的不是二叉搜索树的数目,而是要构建这样的树。分析方法仍然是可以借鉴的,核心思想为利用『二叉搜索树』的定义,如果以 i 为根节点,那么其左子树由[1, i - 1]构成,右子树由[i + 1, n] 构成。要构建包含1到n的二叉搜索树,只需遍历1到n中的数作为根节点,以`i`为界将数列分为左右两部分,小于`i`的数作为左子树,大于`i`的数作为右子树,使用两重循环将左右子树所有可能的组合链接到以`i`为根节点的节点上。 容易看出,以上求解的思路非常适合用递归来处理,接下来便是设计递归的终止步、输入参数和返回结果了。由以上分析可以看出递归严重依赖数的区间和`i`,那要不要将`i`也作为输入参数的一部分呢?首先可以肯定的是必须使用『数的区间』这两个输入参数,又因为`i`是随着『数的区间』这两个参数的,故不应该将其加入到输入参数中。分析方便,不妨设『数的区间』两个输入参数分别为`start`和`end`. 接下来谈谈终止步的确定,由于根据`i`拆分左右子树的过程中,递归调用的方法中入口参数会缩小,且存在`start <= i <= end`, 故终止步为`start > end`. 那要不要对`start == end`返回呢?保险起见可以先写上,后面根据情况再做删改。总结以上思路,简单的伪代码如下: ~~~ helper(start, end) { result; if (start > end) { result.push_back(NULL); return; } else if (start == end) { result.push_back(TreeNode(i)); return; } // dfs for (int i = start; i <= end; ++i) { leftTree = helper(start, i - 1); rightTree = helper(i + 1, end); // link left and right sub tree to the root i for (j in leftTree ){ for (k in rightTree) { root = TreeNode(i); root->left = leftTree[j]; root->right = rightTree[k]; result.push_back(root); } } } return result; } ~~~ 大致的框架如上所示,我们来个简单的数据验证下,以[1, 2, 3]为例,调用堆栈图如下所示: 1. helper(1,3) - [leftTree]: helper(1, 0) ==> return NULL - ---loop i = 2--- - [rightTree]: helper(2, 3) 1. [leftTree]: helper(2,1) ==> return NULL 1. [rightTree]: helper(3,3) ==> return node(3) 1. [for loop]: ==> return (2->3) - ---loop i = 3--- 1. [leftTree]: helper(2,2) ==> return node(2) 1. [rightTree]: helper(4,3) ==> return NULL 1. [for loop]: ==> return (3->2) 1. ... 简单验证后可以发现这种方法的**核心为递归地构造左右子树并将其链接到相应的根节点中。**对于`start`和`end`相等的情况的,其实不必单独考虑,因为`start == end`时其左右子树均返回空,故在`for`循环中返回根节点。当然单独考虑可减少递归栈的层数,但实际测下来后发现运行时间反而变长了不少 :( ### Python ~~~ """ Definition of TreeNode: class TreeNode: def __init__(self, val): this.val = val this.left, this.right = None, None """ class Solution: # @paramn n: An integer # @return: A list of root def generateTrees(self, n): return self.helper(1, n) def helper(self, start, end): result = [] if start > end: result.append(None) return result for i in xrange(start, end + 1): # generate left and right sub tree leftTree = self.helper(start, i - 1) rightTree = self.helper(i + 1, end) # link left and right sub tree to root(i) for j in xrange(len(leftTree)): for k in xrange(len(rightTree)): root = TreeNode(i) root.left = leftTree[j] root.right = rightTree[k] result.append(root) return result ~~~ ### C++ ~~~ /** * Definition of TreeNode: * class TreeNode { * public: * int val; * TreeNode *left, *right; * TreeNode(int val) { * this->val = val; * this->left = this->right = NULL; * } * } */ class Solution { public: /** * @paramn n: An integer * @return: A list of root */ vector<TreeNode *> generateTrees(int n) { return helper(1, n); } private: vector<TreeNode *> helper(int start, int end) { vector<TreeNode *> result; if (start > end) { result.push_back(NULL); return result; } for (int i = start; i <= end; ++i) { // generate left and right sub tree vector<TreeNode *> leftTree = helper(start, i - 1); vector<TreeNode *> rightTree = helper(i + 1, end); // link left and right sub tree to root(i) for (int j = 0; j < leftTree.size(); ++j) { for (int k = 0; k < rightTree.size(); ++k) { TreeNode *root = new TreeNode(i); root->left = leftTree[j]; root->right = rightTree[k]; result.push_back(root); } } } return result; } }; ~~~ ### Java ~~~ /** * Definition of TreeNode: * public class TreeNode { * public int val; * public TreeNode left, right; * public TreeNode(int val) { * this.val = val; * this.left = this.right = null; * } * } */ public class Solution { /** * @paramn n: An integer * @return: A list of root */ public List<TreeNode> generateTrees(int n) { return helper(1, n); } private List<TreeNode> helper(int start, int end) { List<TreeNode> result = new ArrayList<TreeNode>(); if (start > end) { result.add(null); return result; } for (int i = start; i <= end; i++) { // generate left and right sub tree List<TreeNode> leftTree = helper(start, i - 1); List<TreeNode> rightTree = helper(i + 1, end); // link left and right sub tree to root(i) for (TreeNode lnode: leftTree) { for (TreeNode rnode: rightTree) { TreeNode root = new TreeNode(i); root.left = lnode; root.right = rnode; result.add(root); } } } return result; } } ~~~ ### 源码分析 1. 异常处理,返回None/NULL/null. 1. 遍历start->end, 递归得到左子树和右子树。 1. 两重`for`循环将左右子树的所有可能组合添加至最终返回结果。 注意 [DFS](# "Depth-First Search, 深度优先搜索") 辅助方法`helper`中左右子树及返回根节点的顺序。 ### 复杂度分析 递归调用,一个合理的数组区间将生成新的左右子树,时间复杂度为指数级别,使用的临时空间最后都被加入到最终结果,空间复杂度(堆)近似为 O(1)O(1)O(1), 栈上的空间较大。 ### Reference - [Code Ganker: Unique Binary Search Trees II -- LeetCode](http://codeganker.blogspot.com/2014/04/unique-binary-search-trees-ii-leetcode.html) - [水中的鱼: [LeetCode] Unique Binary Search Trees II, Solution](http://fisherlei.blogspot.com/2013/03/leetcode-unique-binary-search-trees-ii.html) - [Accepted Iterative Java solution. - Leetcode Discuss](https://leetcode.com/discuss/22821/accepted-iterative-java-solution) - [Unique Binary Search Trees II 参考程序 Java/C++/Python](http://www.jiuzhang.com/solutions/unique-binary-search-trees-ii/)