# Merge Intervals
### Source
- leetcode: [Merge Intervals | LeetCode OJ](https://leetcode.com/problems/merge-intervals/)
- lintcode: [(156) Merge Intervals](http://www.lintcode.com/en/problem/merge-intervals/)
### Problem
Given a collection of intervals, merge all overlapping intervals.
#### Example
Given intervals => merged intervals:
~~~
[ [
[1, 3], [1, 6],
[2, 6], => [8, 10],
[8, 10], [15, 18]
[15, 18] ]
]
~~~
#### Challenge
O(n log n) time and O(1) extra space.
### 题解1 - 排序后
初次接触这道题可能会先对 interval 排序,随后考虑相邻两个 interval 的 end 和 start 是否交叉,若交叉则合并之。
### Java
~~~
/**
* Definition of Interval:
* public class Interval {
* int start, end;
* Interval(int start, int end) {
* this.start = start;
* this.end = end;
* }
*/
class Solution {
/**
* @param intervals: Sorted interval list.
* @return: A new sorted interval list.
*/
public List<Interval> merge(List<Interval> intervals) {
if (intervals == null || intervals.isEmpty()) return intervals;
List<Interval> result = new ArrayList<Interval>();
// sort with Comparator
Collections.sort(intervals, new IntervalComparator());
Interval prev = intervals.get(0);
for (Interval interval : intervals) {
if (prev.end < interval.start) {
result.add(prev);
prev = interval;
} else {
prev.start = Math.min(prev.start, interval.start);
prev.end = Math.max(prev.end, interval.end);
}
}
result.add(prev);
return result;
}
private class IntervalComparator implements Comparator<Interval> {
public int compare(Interval a, Interval b) {
return a.start - b.start;
}
}
}
~~~
### 源码分析
这里因为需要比较 interval 的 start, 所以需要自己实现 Comparator 接口并覆盖 compare 方法。这里取 prev 为前一个 interval。最后不要忘记加上 prev.
### 复杂度分析
排序 O(nlogn)O(n \log n)O(nlogn), 遍历 O(n)O(n)O(n), 所以总的时间复杂度为 O(nlogn)O(n \log n)O(nlogn). 空间复杂度 O(1)O(1)O(1).
### 题解2 - 插入排序
除了首先对 intervals 排序外,还可以使用类似插入排序的方法,插入的方法在题 [Insert Interval ](http://algorithm.yuanbin.me/zh-cn/problem_misc/insert_interval.html) 中已详述。这里将 result 作为 intervals 传进去即可,新插入的 interval 为 intervals 遍历得到的结果。
### Java
~~~
/**
* Definition of Interval:
* public class Interval {
* int start, end;
* Interval(int start, int end) {
* this.start = start;
* this.end = end;
* }
*/
class Solution {
/**
* @param intervals: Sorted interval list.
* @return: A new sorted interval list.
*/
public List<Interval> merge(List<Interval> intervals) {
if (intervals == null || intervals.isEmpty()) return intervals;
List<Interval> result = new ArrayList<Interval>();
for (Interval interval : intervals) {
result = insert(result, interval);
}
return result;
}
private List<Interval> insert(List<Interval> intervals, Interval newInterval) {
List<Interval> result = new ArrayList<Interval>();
int insertPos = 0;
for (Interval interval : intervals) {
if (newInterval.end < interval.start) {
result.add(interval);
} else if (newInterval.start > interval.end) {
result.add(interval);
insertPos++;
} else {
newInterval.start = Math.min(newInterval.start, interval.start);
newInterval.end = Math.max(newInterval.end, interval.end);
}
}
result.add(insertPos, newInterval);
return result;
}
}
~~~
### 源码分析
关键在 insert 的理解,`result = insert(result, interval);`作为迭代生成新的 result.
### 复杂度分析
每次添加新的 interval 都是线性时间复杂度,故总的时间复杂度为 O(1+2+...+n)=O(n2)O(1 + 2 + ... + n) = O(n^2)O(1+2+...+n)=O(n2). 空间复杂度为 O(n)O(n)O(n).
### Reference
- [Merge Intervals 参考程序 Java/C++/Python](http://www.jiuzhang.com/solutions/merge-intervals/)
- Soulmachine 的 leetcode 题解
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume