# Remove Duplicates from Unsorted List
### Source
- [Remove duplicates from an unsorted linked list - GeeksforGeeks](http://www.geeksforgeeks.org/remove-duplicates-from-an-unsorted-linked-list/)
~~~
Write a removeDuplicates() function which takes a list and deletes
any duplicate nodes from the list. The list is not sorted.
For example if the linked list is 12->11->12->21->41->43->21,
then removeDuplicates() should convert the list to 12->11->21->41->43.
If temporary buffer is not allowed, how to solve it?
~~~
### 题解1 - 两重循环
Remove Duplicates 系列题,之前都是已排序链表,这个题为未排序链表。原题出自 *CTCI* 题2.1。
最容易想到的简单办法就是两重循环删除重复节点了,当前遍历节点作为第一重循环,当前节点的下一节点作为第二重循环。
### Python
~~~
"""
Definition of ListNode
class ListNode(object):
def __init__(self, val, next=None):
self.val = val
self.next = next
"""
class Solution:
"""
@param head: A ListNode
@return: A ListNode
"""
def deleteDuplicates(self, head):
if head is None:
return None
curr = head
while curr is not None:
inner = curr
while inner.next is not None:
if inner.next.val == curr.val:
inner.next = inner.next.next
else:
inner = inner.next
curr = curr.next
return head
~~~
### C++
~~~
/**
* Definition of ListNode
* class ListNode {
* public:
* int val;
* ListNode *next;
* ListNode(int val) {
* this->val = val;
* this->next = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param head: The first node of linked list.
* @return: head node
*/
ListNode *deleteDuplicates(ListNode *head) {
if (head == NULL) return NULL;
ListNode *curr = head;
while (curr != NULL) {
ListNode *inner = curr;
while (inner->next != NULL) {
if (inner->next->val == curr->val) {
inner->next = inner->next->next;
} else {
inner = inner->next;
}
}
curr = curr->next;
}
return head;
}
};
~~~
### Java
~~~
/**
* Definition for ListNode
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) {
* val = x;
* next = null;
* }
* }
*/
public class Solution {
/**
* @param ListNode head is the head of the linked list
* @return: ListNode head of linked list
*/
public static ListNode deleteDuplicates(ListNode head) {
if (head == null) return null;
ListNode curr = head;
while (curr != null) {
ListNode inner = curr;
while (inner.next != null) {
if (inner.next.val == curr.val) {
inner.next = inner.next.next;
} else {
inner = inner.next;
}
}
curr = curr.next;
}
return head;
}
}
~~~
### 源码分析
删除链表的操作一般判断`node.next`较为合适,循环时注意`inner = inner.next`和`inner.next = inner.next.next`的区别即可。
### 复杂度分析
两重循环,时间复杂度为 O(12n2)O(\frac{1}{2}n^2)O(21n2), 空间复杂度近似为 O(1)O(1)O(1).
### 题解2 - 万能的 hashtable
使用辅助空间哈希表,节点值作为键,布尔值作为相应的值(是否为布尔值其实无所谓,关键是键)。
### Python
~~~
"""
Definition of ListNode
class ListNode(object):
def __init__(self, val, next=None):
self.val = val
self.next = next
"""
class Solution:
"""
@param head: A ListNode
@return: A ListNode
"""
def deleteDuplicates(self, head):
if head is None:
return None
hash = {}
hash[head.val] = True
curr = head
while curr.next is not None:
if hash.has_key(curr.next.val):
curr.next = curr.next.next
else:
hash[curr.next.val] = True
curr = curr.next
return head
~~~
### C++
~~~
/**
* Definition of ListNode
* class ListNode {
* public:
* int val;
* ListNode *next;
* ListNode(int val) {
* this->val = val;
* this->next = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param head: The first node of linked list.
* @return: head node
*/
ListNode *deleteDuplicates(ListNode *head) {
if (head == NULL) return NULL;
// C++ 11 use unordered_map
// unordered_map<int, bool> hash;
map<int, bool> hash;
hash[head->val] = true;
ListNode *curr = head;
while (curr->next != NULL) {
if (hash.find(curr->next->val) != hash.end()) {
ListNode *temp = curr->next;
curr->next = curr->next->next;
delete temp;
} else {
hash[curr->next->val] = true;
curr = curr->next;
}
}
return head;
}
};
~~~
### Java
~~~
/**
* Definition for ListNode
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) {
* val = x;
* next = null;
* }
* }
*/
public class Solution {
/**
* @param ListNode head is the head of the linked list
* @return: ListNode head of linked list
*/
public static ListNode deleteDuplicates(ListNode head) {
if (head == null) return null;
ListNode curr = head;
HashMap<Integer, Boolean> hash = new HashMap<Integer, Boolean>();
hash.put(curr.val, true);
while (curr.next != null) {
if (hash.containsKey(curr.next.val)) {
curr.next = curr.next.next;
} else {
hash.put(curr.next.val, true);
curr = curr.next;
}
}
return head;
}
}
~~~
### 源码分析
删除链表中某个节点的经典模板在`while`循环中体现。
### 复杂度分析
遍历一次链表,时间复杂度为 O(n)O(n)O(n), 使用了额外的哈希表,空间复杂度近似为 O(n)O(n)O(n).
### Reference
- [Remove duplicates from an unsorted linked list - GeeksforGeeks](http://www.geeksforgeeks.org/remove-duplicates-from-an-unsorted-linked-list/)
- [ctci/Question.java at master · gaylemcd/ctci](https://github.com/gaylemcd/ctci/blob/master/java/Chapter%202/Question2_1/Question.java)
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume