# Best Time to Buy and Sell Stock III
### Source
- leetcode: [Best Time to Buy and Sell Stock III | LeetCode OJ](https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/)
- lintcode: [(151) Best Time to Buy and Sell Stock III](http://www.lintcode.com/en/problem/best-time-to-buy-and-sell-stock-iii/)
~~~
Say you have an array for
which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit.
You may complete at most two transactions.
Example
Given an example [4,4,6,1,1,4,2,5], return 6.
Note
You may not engage in multiple transactions at the same time
(ie, you must sell the stock before you buy again).
~~~
### 题解
与前两道允许一次或者多次交易不同,这里只允许最多两次交易,且这两次交易不能交叉。咋一看似乎无从下手,我最开始想到的是找到排在前2个的波谷波峰,计算这两个差值之和。原理上来讲应该是可行的,但是需要记录 O(n2)O(n^2)O(n2) 个波谷波峰并对其排序,实现起来也比较繁琐。
除了以上这种直接分析问题的方法外,是否还可以借助分治的思想解决呢?最多允许两次不相交的交易,也就意味着这两次交易间存在某一分界线,考虑到可只交易一次,也可交易零次,故分界线的变化范围为第一天至最后一天,只需考虑分界线两边各自的最大利润,最后选出利润和最大的即可。
这种方法抽象之后则为首先将 [1,n] 拆分为 [1,i] 和 [i+1,n], 参考卖股票系列的第一题计算各自区间内的最大利润即可。[1,i] 区间的最大利润很好算,但是如何计算 [i+1,n] 区间的最大利润值呢?难道需要重复 n 次才能得到?注意到区间的右侧 n 是个不变值,我们从 [1, i] 计算最大利润是更新波谷的值,那么我们可否逆序计算最大利润呢?这时候就需要更新记录波峰的值了。逆向思维大法好!Talk is cheap, show me the code!
### Python
~~~
class Solution:
"""
@param prices: Given an integer array
@return: Maximum profit
"""
def maxProfit(self, prices):
if prices is None or len(prices) <= 1:
return 0
n = len(prices)
# get profit in the front of prices
profit_front = [0] * n
valley = prices[0]
for i in xrange(1, n):
profit_front[i] = max(profit_front[i - 1], prices[i] - valley)
valley = min(valley, prices[i])
# get profit in the back of prices, (i, n)
profit_back = [0] * n
peak = prices[-1]
for i in xrange(n - 2, -1, -1):
profit_back[i] = max(profit_back[i + 1], peak - prices[i])
peak = max(peak, prices[i])
# add the profit front and back
profit = 0
for i in xrange(n):
profit = max(profit, profit_front[i] + profit_back[i])
return profit
~~~
### C++
~~~
class Solution {
public:
/**
* @param prices: Given an integer array
* @return: Maximum profit
*/
int maxProfit(vector<int> &prices) {
if (prices.size() <= 1) return 0;
int n = prices.size();
// get profit in the front of prices
vector<int> profit_front = vector<int>(n, 0);
for (int i = 1, valley = prices[0]; i < n; ++i) {
profit_front[i] = max(profit_front[i - 1], prices[i] - valley);
valley = min(valley, prices[i]);
}
// get profit in the back of prices, (i, n)
vector<int> profit_back = vector<int>(n, 0);
for (int i = n - 2, peak = prices[n - 1]; i >= 0; --i) {
profit_back[i] = max(profit_back[i + 1], peak - prices[i]);
peak = max(peak, prices[i]);
}
// add the profit front and back
int profit = 0;
for (int i = 0; i < n; ++i) {
profit = max(profit, profit_front[i] + profit_back[i]);
}
return profit;
}
};
~~~
### Java
~~~
class Solution {
/**
* @param prices: Given an integer array
* @return: Maximum profit
*/
public int maxProfit(int[] prices) {
if (prices == null || prices.length <= 1) return 0;
// get profit in the front of prices
int[] profitFront = new int[prices.length];
profitFront[0] = 0;
for (int i = 1, valley = prices[0]; i < prices.length; i++) {
profitFront[i] = Math.max(profitFront[i - 1], prices[i] - valley);
valley = Math.min(valley, prices[i]);
}
// get profit in the back of prices, (i, n)
int[] profitBack = new int[prices.length];
profitBack[prices.length - 1] = 0;
for (int i = prices.length - 2, peak = prices[prices.length - 1]; i >= 0; i--) {
profitBack[i] = Math.max(profitBack[i + 1], peak - prices[i]);
peak = Math.max(peak, prices[i]);
}
// add the profit front and back
int profit = 0;
for (int i = 0; i < prices.length; i++) {
profit = Math.max(profit, profitFront[i] + profitBack[i]);
}
return profit;
}
};
~~~
### 源码分析
整体分为三大部分,计算前半部分的最大利润值,然后计算后半部分的最大利润值,最后遍历得到最终的最大利润值。
### 复杂度分析
三次遍历原数组,时间复杂度为 O(n)O(n)O(n), 利用了若干和数组等长的数组,空间复杂度也为 O(n)O(n)O(n).
### Reference
- soulmachine 的卖股票系列
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume