# Search Range in Binary Search Tree
### Source
- lintcode: [(11) Search Range in Binary Search Tree](http://www.lintcode.com/en/problem/search-range-in-binary-search-tree/)
### Problem
Given two values k1 and k2 (where k1 < k2) and a root pointer to a BinarySearch Tree. Find all the keys of tree in range k1 to k2. i.e. print all xsuch that k1<=x<=k2 and x is a key of given BST. Return all the keys inascending order.
#### Example
If k1 = `10` and k2 = `22`, then your function should return `[12, 20, 22]`.
~~~
20
/ \
8 22
/ \
4 12
~~~
### 题解 - 中序遍历
中等偏易难度题,本题涉及到二叉查找树的按序输出,应马上联想到二叉树的中序遍历,对于二叉查找树而言,使用中序遍历即可得到有序元素。对每次访问的元素加以判断即可得最后结果,由于 OJ 上给的模板不适合递归处理,新建一个私有方法即可。
### C++
~~~
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param root: The root of the binary search tree.
* @param k1 and k2: range k1 to k2.
* @return: Return all keys that k1<=key<=k2 in ascending order.
*/
vector<int> searchRange(TreeNode* root, int k1, int k2) {
vector<int> result;
inorder_dfs(result, root, k1, k2);
return result;
}
private:
void inorder_dfs(vector<int> &ret, TreeNode *root, int k1, int k2) {
if (NULL == root) {
return;
}
inorder_dfs(ret, root->left, k1, k2);
if ((root->val >= k1) && (root->val <= k2)) {
ret.push_back(root->val);
}
inorder_dfs(ret, root->right, k1, k2);
}
};
~~~
### Java
~~~
/**
* Definition of TreeNode:
* public class TreeNode {
* public int val;
* public TreeNode left, right;
* public TreeNode(int val) {
* this.val = val;
* this.left = this.right = null;
* }
* }
*/
public class Solution {
/**
* @param root: The root of the binary search tree.
* @param k1 and k2: range k1 to k2.
* @return: Return all keys that k1<=key<=k2 in ascending order.
*/
public ArrayList<Integer> searchRange(TreeNode root, int k1, int k2) {
ArrayList<Integer> result = new ArrayList<Integer>();
helper(root, k1, k2, result);
return result;
}
private void helper(TreeNode root, int k1, int k2, ArrayList<Integer> result) {
if (root == null) return;
// in-order binary tree iteration
helper(root.left, k1, k2, result);
if (k1 <= root.val && root.val <= k2) {
result.add(root.val);
}
helper(root.right, k1, k2, result);
}
}
~~~
### 源码分析
以上为题解思路的简易实现,可以优化的地方为「剪枝过程」的处理——不递归遍历不可能有解的节点。优化后的`inorder_dfs`如下:
~~~
void inorder_dfs(vector<int> &ret, TreeNode *root, int k1, int k2) {
if (NULL == root) {
return;
}
if ((NULL != root->left) && (root->val > k1)) {
inorder_dfs(ret, root->left, k1, k2);
} // cut-off for left sub tree
if ((root->val >= k1) && (root->val <= k2)) {
ret.push_back(root->val);
} // add valid value
if ((NULL != root->right) && (root->val < k2)) {
inorder_dfs(ret, root->right, k1, k2);
} // cut-off for right sub tree
}
~~~
****> 「剪枝」的判断条件容易出错,应将当前节点的值与`k1`和`k2`进行比较而不是其左子节点或右子节点的值。
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume