# Merge Sorted Array
### Source
- leetcode: [Merge Sorted Array | LeetCode OJ](https://leetcode.com/problems/merge-sorted-array/)
- lintcode: [(6) Merge Sorted Array](http://www.lintcode.com/en/problem/merge-sorted-array/)
~~~
Given two sorted integer arrays A and B, merge B into A as one sorted array.
Example
A = [1, 2, 3, empty, empty], B = [4, 5]
After merge, A will be filled as [1, 2, 3, 4, 5]
Note
You may assume that A has enough space (size that is greater or equal to m + n)
to hold additional elements from B.
The number of elements initialized in A and B are m and n respectively.
~~~
### 题解
因为本题有 in-place 的限制,故必须从数组末尾的两个元素开始比较;否则就会产生挪动,一旦挪动就会是 O(n2)O(n^2)O(n2) 的。自尾部向首部逐个比较两个数组内的元素,取较大的置于数组 A 中。由于 A 的容量较 B 大,故最后 `m == 0` 或者 `n == 0` 时仅需处理 B 中的元素,因为 A 中的元素已经在 A 中,无需处理。
### Python
~~~
class Solution:
"""
@param A: sorted integer array A which has m elements,
but size of A is m+n
@param B: sorted integer array B which has n elements
@return: void
"""
def mergeSortedArray(self, A, m, B, n):
if B is None:
return A
index = m + n - 1
while m > 0 and n > 0:
if A[m - 1] > B[n - 1]:
A[index] = A[m - 1]
m -= 1
else:
A[index] = B[n - 1]
n -= 1
index -= 1
# B has elements left
while n > 0:
A[index] = B[n - 1]
n -= 1
index -= 1
~~~
### C++
~~~
class Solution {
public:
/**
* @param A: sorted integer array A which has m elements,
* but size of A is m+n
* @param B: sorted integer array B which has n elements
* @return: void
*/
void mergeSortedArray(int A[], int m, int B[], int n) {
int index = m + n - 1;
while (m > 0 && n > 0) {
if (A[m - 1] > B[n - 1]) {
A[index] = A[m - 1];
--m;
} else {
A[index] = B[n - 1];
--n;
}
--index;
}
// B has elements left
while (n > 0) {
A[index] = B[n - 1];
--n;
--index;
}
}
};
~~~
### Java
~~~
class Solution {
/**
* @param A: sorted integer array A which has m elements,
* but size of A is m+n
* @param B: sorted integer array B which has n elements
* @return: void
*/
public void mergeSortedArray(int[] A, int m, int[] B, int n) {
if (A == null || B == null) return;
int index = m + n - 1;
while (m > 0 && n > 0) {
if (A[m - 1] > B[n - 1]) {
A[index] = A[m - 1];
m--;
} else {
A[index] = B[n - 1];
n--;
}
index--;
}
// B has elements left
while (n > 0) {
A[index] = B[n - 1];
n--;
index--;
}
}
}
~~~
### 源码分析
第一个 while 只能用条件与。
### 复杂度分析
最坏情况下需要遍历两个数组中所有元素,时间复杂度为 O(n)O(n)O(n). 空间复杂度 O(1)O(1)O(1).
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume