# Problem A. Password Attacker
### Source
- [Dashboard - Round B APAC Test - Problem A. Password Attacker](https://code.google.com/codejam/contest/4214486/dashboard#s=p0)
### Problem
Passwords are widely used in our lives: for ATMs, online forum logins, mobile device unlock and door access. Everyone cares about password security. However, attackers always find ways to steal our passwords. Here is one possible situation:
Assume that Eve, the attacker, wants to steal a password from the victim Alice. Eve cleans up the keyboard beforehand. After Alice types the password and leaves, Eve collects the fingerprints on the keyboard. Now she knows which keys are used in the password. However, Eve won't know how many times each key has been pressed or the order of the keystroke sequence.
To simplify the problem, let's assume that Eve finds Alice's fingerprints only occurs on M keys. And she knows, by another method, that Alice's password contains N characters. Furthermore, every keystroke on the keyboard only generates a single, unique character. Also, Alice won't press other irrelevant keys like 'left', 'home', 'backspace' and etc.
Here's an example. Assume that Eve finds Alice's fingerprints on M=3 key '3', '7' and '5', and she knows that Alice's password is N=4-digit in length. So all the following passwords are possible: 3577, 3557, 7353 and 5735. (And, in fact, there are 32 more possible passwords.)
However, these passwords are not possible:
~~~
1357 // There is no fingerprint on key '1'
3355 // There is fingerprint on key '7',
so '7' must occur at least once.
357 // Eve knows the password must be a 4-digit number.
~~~
With the information, please count that how many possible passwords satisfy the statements above. Since the result could be large, please output the answer modulo 1000000007(109+7).
#### Input
The first line of the input gives the number of test cases, T.For the next T lines, each contains two space-separated numbers M and N, indicating a test case.
#### Output
For each test case, output one line containing "Case #x: y", where x is the test case number (starting from 1) and y is the total number of possible passwords modulo 1000000007(109+7).
#### Limits
**Small dataset**
T = 15.1 ≤ M ≤ N ≤ 7.
**Large dataset**
T = 100.1 ≤ M ≤ N ≤ 100.
#### Smaple
~~~
Input Output
4
1 1 Case #1: 1
3 4 Case #2: 36
5 5 Case #3: 120
15 15 Case #4: 674358851
~~~
### 题解
题目看似很长,其实简单来讲就是用 M 个 不同的字符组成长度为 N 的字符串,问有多少种不同的排列。这里 M 小于 N,要是大于的话就是纯排列了。这道题我最开始想用纯数学方法推导公式一步到位,实践下来发现这种想法真是太天真了,这不是数学竞赛... 即使用推导也应该是推导类似动态规划的状态转移方程。
这里的动态规划不太明显,我们以状态`dp[m][n]`表示用 m 个不同的字符能组成长度为 n 的不同字符串的个数。这里需要注意的是最后长度为 n 的字符串中必须包含 m 个不同的字符,不多也不少。接下来就是寻找状态转移方程了,之前可能的状态为`dp[m - 1][n -1], dp[m - 1][n], dp[m][n - 1]`. 现在问题来了,怎么解释这些状态以寻找状态转移方程?常规方法为正向分析,即分析`m ==> n`, 但很快我们可以发现`dp[m - 1][n]`这个状态很难处理。既然正向分析比较麻烦,我们不妨试试反向从`n ==> m`分析,可以发现字符串个数由 n 变为 n-1,这减少的字符可以分为两种情况,一种是这个减少的字符就在前 n - 1个字符中,另一种则不在,如此一来便做到了不重不漏。相应的状态转移方程为:
~~~
dp[i][j] = dp[m][n-1] * m + dp[m - 1][n - 1] * m
~~~
第一种和第二种情况下字符串的第 n 位均可由 m 个字符中的一个填充。初始化分两种情况,第一种为索引为0时,其值显然为0;第二种则是 m 为1时,容易知道相应的排列为1。最后返回 `dp[M][N]`.
### Java
~~~
import java.util.*;
public class Solution {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int T = in.nextInt();
// System.out.println("T = " + T);
for (int t = 1; t <= T; t++) {
int M = in.nextInt(), N = in.nextInt();
long ans = solve(M, N);
// System.out.printf("M = %d, N = %d\n", M, N);
System.out.printf("Case #%d: %d\n", t, ans);
}
}
public static long solve(int M, int N) {
long[][] dp = new long[1 + M][1 + N];
long mod = 1000000007;
for (int j = 1; j <= N; j++) {
dp[1][j] = 1;
}
for (int i = 2; i <= M; i++) {
for (int j = i; j <= N; j++) {
dp[i][j] = i * (dp[i][j - 1] + dp[i - 1][j - 1]);
dp[i][j] %= mod;
}
}
return dp[M][N];
}
}
~~~
### 源码分析
Google Code Jam 上都是自己下载输入文件,上传结果,这里我们使用输入输出重定向的方法解决这个问题。举个例子,将这段代码保存为`Solution.java`, 将标准输入重定向至输入文件,标准输出重定向至输出文件。编译好之后以如下方式运行:
~~~
java Solution < A-large-practice.in > A-large-practice.out
~~~
这种方式处理各种不同 OJ 平台的输入输出较为方便。
### 复杂度分析
时间复杂度 O(mn)O(mn)O(mn), 空间复杂度 O(mn)O(mn)O(mn).
### Reference
- [Google-APAC2015-"Password Attacker" - dmsehuang的专栏](http://blog.csdn.net/dmsehuang/article/details/40807799)
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume