# Maximum Subarray II
### Source
- lintcode: [(42) Maximum Subarray II](http://www.lintcode.com/en/problem/maximum-subarray-ii/)
~~~
Given an array of integers,
find two non-overlapping subarrays which have the largest sum.
The number in each subarray should be contiguous.
Return the largest sum.
Example
For given [1, 3, -1, 2, -1, 2],
the two subarrays are [1, 3] and [2, -1, 2] or [1, 3, -1, 2] and [2],
they both have the largest sum 7.
Note
The subarray should contain at least one number
Challenge
Can you do it in time complexity O(n) ?
~~~
### 题解
严格来讲这道题这道题也可以不用动规来做,这里还是采用经典的动规解法。[Maximum Subarray](http://algorithm.yuanbin.me/zh-cn/dynamic_programming/maximum_subarray.html) 中要求的是数组中最大子数组和,这里是求不相重叠的两个子数组和的和最大值,做过买卖股票系列的题的话这道题就非常容易了,既然我们已经求出了单一子数组的最大和,那么我们使用隔板法将数组一分为二,分别求这两段的最大子数组和,求相加后的最大值即为最终结果。隔板前半部分的最大子数组和很容易求得,但是后半部分难道需要将索引从0开始依次计算吗?NO!!! 我们可以采用从后往前的方式进行遍历,这样时间复杂度就大大降低了。
### Java
~~~
public class Solution {
/**
* @param nums: A list of integers
* @return: An integer denotes the sum of max two non-overlapping subarrays
*/
public int maxTwoSubArrays(ArrayList<Integer> nums) {
// -1 is not proper for illegal input
if (nums == null || nums.isEmpty()) return -1;
int size = nums.size();
// get max sub array forward
int[] maxSubArrayF = new int[size];
forwardTraversal(nums, maxSubArrayF);
// get max sub array backward
int[] maxSubArrayB = new int[size];
backwardTraversal(nums, maxSubArrayB);
// get maximum subarray by iteration
int maxTwoSub = Integer.MIN_VALUE;
for (int i = 0; i < size - 1; i++) {
// non-overlapping
maxTwoSub = Math.max(maxTwoSub, maxSubArrayF[i] + maxSubArrayB[i + 1]);
}
return maxTwoSub;
}
private void forwardTraversal(List<Integer> nums, int[] maxSubArray) {
int sum = 0, minSum = 0, maxSub = Integer.MIN_VALUE;
int size = nums.size();
for (int i = 0; i < size; i++) {
minSum = Math.min(minSum, sum);
sum += nums.get(i);
maxSub = Math.max(maxSub, sum - minSum);
maxSubArray[i] = maxSub;
}
}
private void backwardTraversal(List<Integer> nums, int[] maxSubArray) {
int sum = 0, minSum = 0, maxSub = Integer.MIN_VALUE;
int size = nums.size();
for (int i = size - 1; i >= 0; i--) {
minSum = Math.min(minSum, sum);
sum += nums.get(i);
maxSub = Math.max(maxSub, sum - minSum);
maxSubArray[i] = maxSub;
}
}
}
~~~
### 源码分析
前向搜索和逆向搜索我们使用私有方法实现,可读性更高。注意是求非重叠子数组和,故求`maxTwoSub`时i 的范围为`0, size - 2`, 前向数组索引为 i, 后向索引为 i + 1.
### 复杂度分析
前向和后向搜索求得最大子数组和,时间复杂度 O(2n)=O(n)O(2n)=O(n)O(2n)=O(n), 空间复杂度 O(n)O(n)O(n). 遍历子数组和的数组求最终两个子数组和的最大值,时间复杂度 O(n)O(n)O(n). 故总的时间复杂度为 O(n)O(n)O(n), 空间复杂度 O(n)O(n)O(n).
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume