# Find the Connected Component in the Undirected Graph
### Source
- lintcode: [(431) Find the Connected Component in the Undirected Graph](http://www.lintcode.com/en/problem/find-the-connected-component-in-the-undirected-graph/)
### Problem
Find the number connected component in the undirected graph. Each node in thegraph contains a label and a list of its neighbors. (a connected component (orjust component) of an undirected graph is a subgraph in which any two verticesare connected to each other by paths, and which is connected to no additionalvertices in the supergraph.)
#### Example
Given graph:
~~~
A------B C
\ | |
\ | |
\ | |
\ | |
D E
~~~
Return `{A,B,D}, {C,E}`. Since there are two connected component which is`{A,B,D}, {C,E}`
### 题解1 - [DFS](# "Depth-First Search, 深度优先搜索")
深搜加哈希表(因为有环,必须记录节点是否被访问过)
### Java
~~~
/**
* Definition for Undirected graph.
* class UndirectedGraphNode {
* int label;
* ArrayList<UndirectedGraphNode> neighbors;
* UndirectedGraphNode(int x) { label = x; neighbors = new ArrayList<UndirectedGraphNode>(); }
* }
*/
public class Solution {
/**
* @param nodes a array of Undirected graph node
* @return a connected set of a Undirected graph
*/
public List<List<Integer>> connectedSet(ArrayList<UndirectedGraphNode> nodes) {
if (nodes == null || nodes.size() == 0) return null;
List<List<Integer>> result = new ArrayList<List<Integer>>();
Set<UndirectedGraphNode> visited = new HashSet<UndirectedGraphNode>();
for (UndirectedGraphNode node : nodes) {
if (visited.contains(node)) continue;
List<Integer> temp = new ArrayList<Integer>();
dfs(node, visited, temp);
Collections.sort(temp);
result.add(temp);
}
return result;
}
private void dfs(UndirectedGraphNode node,
Set<UndirectedGraphNode> visited,
List<Integer> result) {
// add node into result
result.add(node.label);
visited.add(node);
// node is not connected, exclude by for iteration
// if (node.neighbors.size() == 0 ) return;
for (UndirectedGraphNode neighbor : node.neighbors) {
if (visited.contains(neighbor)) continue;
dfs(neighbor, visited, result);
}
}
}
~~~
### 源码分析
注意题目的输出要求,需要为 Integer 和有序。添加 node 至 result 和 visited 时放一起,且只在 [dfs](# "Depth-First Search, 深度优先搜索") 入口,避免漏解和重解。
### 复杂度分析
遍历所有节点和边一次,时间复杂度 O(V+E)O(V+E)O(V+E), 记录节点是否被访问,空间复杂度 O(V)O(V)O(V).
### 题解2 - [BFS](# "Breadth-First Search, 广度优先搜索")
深搜容易爆栈,采用 [BFS](# "Breadth-First Search, 广度优先搜索") 较为安全。[BFS](# "Breadth-First Search, 广度优先搜索") 中记录已经访问的节点在入队前判断,可有效防止不重不漏。
### Java
~~~
/**
* Definition for Undirected graph.
* class UndirectedGraphNode {
* int label;
* ArrayList<UndirectedGraphNode> neighbors;
* UndirectedGraphNode(int x) { label = x; neighbors = new ArrayList<UndirectedGraphNode>(); }
* }
*/
public class Solution {
/**
* @param nodes a array of Undirected graph node
* @return a connected set of a Undirected graph
*/
public List<List<Integer>> connectedSet(ArrayList<UndirectedGraphNode> nodes) {
if (nodes == null || nodes.size() == 0) return null;
List<List<Integer>> result = new ArrayList<List<Integer>>();
// log visited node before push into queue
Set<UndirectedGraphNode> visited = new HashSet<UndirectedGraphNode>();
for (UndirectedGraphNode node : nodes) {
if (visited.contains(node)) continue;
List<Integer> row = bfs(node, visited);
result.add(row);
}
return result;
}
private List<Integer> bfs(UndirectedGraphNode node,
Set<UndirectedGraphNode> visited) {
List<Integer> row = new ArrayList<Integer>();
Queue<UndirectedGraphNode> q = new LinkedList<UndirectedGraphNode>();
q.offer(node);
visited.add(node);
while (!q.isEmpty()) {
UndirectedGraphNode qNode = q.poll();
row.add(qNode.label);
for (UndirectedGraphNode neighbor : qNode.neighbors) {
if (visited.contains(neighbor)) continue;
q.offer(neighbor);
visited.add(neighbor);
}
}
Collections.sort(row);
return row;
}
}
~~~
### 源码分析
略
### 复杂度分析
同题解一。
### Reference
- [Find the Connected Component in the Undirected Graph 参考程序 Java/C++/Python](http://www.jiuzhang.com/solutions/find-the-connected-component-in-the-undirected-graph/)
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume