# Longest Common Subsequence
- tags: [[DP_Two_Sequence](# "一般有两个数组或者两个字符串,计算其匹配关系. 通常可用 `f[i][j]`表示第一个数组的前 i 位和第二个数组的前 j 位的关系。")]
### Source
- lintcode: [(77) Longest Common Subsequence](http://www.lintcode.com/en/problem/longest-common-subsequence/)
~~~
Given two strings, find the longest common subsequence (LCS).
Your code should return the length of LCS.
Have you met this question in a real interview? Yes
Example
For "ABCD" and "EDCA", the LCS is "A" (or "D", "C"), return 1.
For "ABCD" and "EACB", the LCS is "AC", return 2.
Clarification
What's the definition of Longest Common Subsequence?
https://en.wikipedia.org/wiki/Longest_common_subsequence_problem
http://baike.baidu.com/view/2020307.htm
~~~
### 题解
求最长公共子序列的数目,注意这里的子序列可以不是连续序列,务必问清楚题意。求『最长』类的题目往往与动态规划有点关系,这里是两个字符串,故应为双序列动态规划。
这道题的状态很容易找,不妨先试试以`f[i][j]`表示字符串 A 的前 `i` 位和字符串 B 的前 `j` 位的最长公共子序列数目,那么接下来试试寻找其状态转移方程。从实际例子`ABCD`和`EDCA`出发,首先初始化`f`的长度为字符串长度加1,那么有`f[0][0] = 0`, `f[0][*] = 0`, `f[*][0] = 0`, 最后应该返回`f[lenA][lenB]`. 即 f 中索引与字符串索引对应(字符串索引从1开始算起),那么在A 的第一个字符与 B 的第一个字符相等时,`f[1][1] = 1 + f[0][0]`, 否则`f[1][1] = max(f[0][1], f[1][0])`。
推而广之,也就意味着若`A[i] == B[j]`, 则分别去掉这两个字符后,原 LCS 数目减一,那为什么一定是1而不是0或者2呢?因为不管公共子序列是以哪个字符结尾,在`A[i] == B[j]`时 LCS 最多只能增加1. 而在`A[i] != B[j]`时,由于`A[i]` 或者 `B[j]` 不可能同时出现在最终的 LCS 中,故这个问题可进一步缩小,`f[i][j] = max(f[i - 1][j], f[i][j - 1])`. 需要注意的是这种状态转移方程只依赖最终的 LCS 数目,而不依赖于公共子序列到底是以第几个索引结束。
### Python
~~~
class Solution:
"""
@param A, B: Two strings.
@return: The length of longest common subsequence of A and B.
"""
def longestCommonSubsequence(self, A, B):
if not A or not B:
return 0
lenA, lenB = len(A), len(B)
lcs = [[0 for i in xrange(1 + lenA)] for j in xrange(1 + lenB)]
for i in xrange(1, 1 + lenA):
for j in xrange(1, 1 + lenB):
if A[i - 1] == B[j - 1]:
lcs[i][j] = 1 + lcs[i - 1][j - 1]
else:
lcs[i][j] = max(lcs[i - 1][j], lcs[i][j - 1])
return lcs[lenA][lenB]
~~~
### C++
~~~
class Solution {
public:
/**
* @param A, B: Two strings.
* @return: The length of longest common subsequence of A and B.
*/
int longestCommonSubsequence(string A, string B) {
if (A.empty()) return 0;
if (B.empty()) return 0;
int lenA = A.size();
int lenB = B.size();
vector<vector<int> > lcs = \
vector<vector<int> >(1 + lenA, vector<int>(1 + lenB));
for (int i = 1; i < 1 + lenA; i++) {
for (int j = 1; j < 1 + lenB; j++) {
if (A[i - 1] == B[j - 1]) {
lcs[i][j] = 1 + lcs[i - 1][j - 1];
} else {
lcs[i][j] = max(lcs[i - 1][j], lcs[i][j - 1]);
}
}
}
return lcs[lenA][lenB];
}
};
~~~
### Java
~~~
public class Solution {
/**
* @param A, B: Two strings.
* @return: The length of longest common subsequence of A and B.
*/
public int longestCommonSubsequence(String A, String B) {
if (A == null || A.length() == 0) return 0;
if (B == null || B.length() == 0) return 0;
int lenA = A.length();
int lenB = B.length();
int[][] lcs = new int[1 + lenA][1 + lenB];
for (int i = 1; i < 1 + lenA; i++) {
for (int j = 1; j < 1 + lenB; j++) {
if (A.charAt(i - 1) == B.charAt(j - 1)) {
lcs[i][j] = 1 + lcs[i - 1][j - 1];
} else {
lcs[i][j] = Math.max(lcs[i - 1][j], lcs[i][j - 1]);
}
}
}
return lcs[lenA][lenB];
}
}
~~~
### 源码分析
注意 Python 中的多维数组初始化方式,不可简单使用`[[0] * len(A)] * len(B)]`, 具体原因是因为 Python 中的对象引用方式 [Stackoverflow](#)。
### 复杂度分析
两重for 循环,时间复杂度为 O(lenA×lenB)O(lenA \times lenB)O(lenA×lenB), 使用了二维数组,空间复杂度也为 O(lenA×lenB)O(lenA \times lenB)O(lenA×lenB).
### Reference
- Stackoverflow
> .
[Python multi-dimensional array initialization without a loop - Stack Overflow](http://stackoverflow.com/questions/3662475/python-multi-dimensional-array-initialization-without-a-loop)[ ↩](# "Jump back to footnote [Stackoverflow] in the text.")
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume