# Longest Increasing Continuous subsequence II
### Source
- lintcode: [(398) Longest Increasing Continuous subsequence II](http://www.lintcode.com/en/problem/longest-increasing-continuous-subsequence-ii/)
### Problem
Give you an integer matrix (with row size n, column size m),find the longest increasing continuous subsequence in this matrix. (The definition of the longest increasing continuous subsequence here can start at any row or column and go up/down/right/left any direction).
#### Example
Given a matrix:
~~~
[
[1 ,2 ,3 ,4 ,5],
[16,17,24,23,6],
[15,18,25,22,7],
[14,19,20,21,8],
[13,12,11,10,9]
]
~~~
return 25
#### Challenge
O(nm) time and memory.
### 题解
题 [Longest Increasing Continuous subsequence](http://algorithm.yuanbin.me/zh-cn/dynamic_programming/longest_increasing_continuous_subsequence.html) 的 follow up, 变成一道比较难的题了。从之前的一维 DP 变为现在的二维 DP,自增方向可从上下左右四个方向进行。需要结合 [DFS](# "Depth-First Search, 深度优先搜索") 和动态规划两大重量级武器。
根据二维 DP 的通用方法,我们首先需要关注状态及状态转移方程,状态转移方程相对明显一点,即上下左右四个方向的元素值递增关系,根据此转移方程,**不难得到我们需要的状态为`dp[i][j]`——表示从坐标`(i, j)`出发所得到的最长连续递增子序列。**根据状态及转移方程我们不难得到初始化应该为1或者0,这要视具体情况而定。
这里我们可能会纠结的地方在于自增的方向,平时见到的二维 DP 自增方向都是从小到大,而这里的增长方向却不一定。**这里需要突破思维定势的地方在于我们可以不理会从哪个方向自增,只需要处理自增和边界条件即可。**根据转移方程可以知道使用递归来解决是比较好的方式,这里关键的地方就在于递归的终止条件。比较容易想到的一个递归终止条件自然是当前元素是整个矩阵中的最大元素,索引朝四个方向出发都无法自增,因此返回1. 另外可以预想到的是如果不进行记忆化存储,递归过程中自然会产生大量重复计算,根据记忆化存储的通用方法,这里可以以结果是否为0(初始化为0时)来进行区分。
### Java
~~~
public class Solution {
/**
* @param A an integer matrix
* @return an integer
*/
public int longestIncreasingContinuousSubsequenceII(int[][] A) {
if (A == null || A.length == 0 || A[0].length == 0) return 0;
int lics = 0;
int[][] dp = new int[A.length][A[0].length];
for (int row = 0; row < A.length; row++) {
for (int col = 0; col < A[0].length; col++) {
if (dp[row][col] == 0) {
lics = Math.max(lics, dfs(A, row, col, dp));
}
}
}
return lics;
}
private int dfs(int[][] A, int row, int col, int[][] dp) {
if (dp[row][col] != 0) {
return dp[row][col];
}
// increasing from xxx to up, down, left, right
int up = 0, down = 0, left = 0, right = 0;
// increasing from down to up
if (row > 0 && A[row - 1][col] > A[row][col]) {
up = dfs(A, row - 1, col, dp);
}
// increasing from up to down
if (row + 1 < A.length && A[row + 1][col] > A[row][col]) {
down = dfs(A, row + 1, col, dp);
}
// increasing from right to left
if (col > 0 && A[row][col - 1] > A[row][col]) {
left = dfs(A, row, col - 1, dp);
}
// increasing from left to right
if (col + 1 < A[0].length && A[row][col + 1] > A[row][col]) {
right = dfs(A, row, col + 1, dp);
}
// return maximum of up, down, left, right
dp[row][col] = 1 + Math.max(Math.max(up, down), Math.max(left, right));
return dp[row][col];
}
}
~~~
### 源码分析
[dfs](# "Depth-First Search, 深度优先搜索") 递归最深一层即矩阵中最大的元素处,然后逐层返回。这道题对状态`dp[i][j]`的理解很重要,否则会陷入对上下左右四个方向的迷雾中。
### 复杂度分析
由于引入了记忆化存储,时间复杂度逼近 O(mn)O(mn)O(mn), 空间复杂度 O(mn)O(mn)O(mn).
### Reference
- [Lintcode: Longest Increasing Continuous subsequence II | codesolutiony](https://codesolutiony.wordpress.com/2015/05/25/lintcode-longest-increasing-continuous-subsequence-ii/)
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume