# Route Between Two Nodes in Graph
### Source
- lintcode: [(176) Route Between Two Nodes in Graph](http://www.lintcode.com/en/problem/route-between-two-nodes-in-graph/)
- [Find if there is a path between two vertices in a directed graph - GeeksforGeeks](http://www.geeksforgeeks.org/find-if-there-is-a-path-between-two-vertices-in-a-given-graph/)
### Problem
Given a directed graph, design an algorithm to find out whether there is aroute between two nodes.
#### Example
Given graph:
~~~
A----->B----->C
\ |
\ |
\ |
\ v
->D----->E
~~~
for `s = B` and `t = E`, return `true`
for `s = D` and `t = C`, return `false`
### 题解1 - [DFS](# "Depth-First Search, 深度优先搜索")
检测图中两点是否通路,图搜索的简单问题,[DFS](# "Depth-First Search, 深度优先搜索") 或者 [BFS](# "Breadth-First Search, 广度优先搜索") 均可,注意检查是否有环即可。这里使用哈希表记录节点是否被处理较为方便。深搜时以起点出发,递归处理其邻居节点,**需要注意的是处理邻居节点的循环时不是直接 return, 而只在找到路径为真时才返回 true, 否则会过早返回 false 而忽略后续可能满足条件的路径。**
### Java
~~~
/**
* Definition for Directed graph.
* class DirectedGraphNode {
* int label;
* ArrayList<DirectedGraphNode> neighbors;
* DirectedGraphNode(int x) {
* label = x;
* neighbors = new ArrayList<DirectedGraphNode>();
* }
* }
*/
public class Solution {
/**
* @param graph: A list of Directed graph node
* @param s: the starting Directed graph node
* @param t: the terminal Directed graph node
* @return: a boolean value
*/
public boolean hasRoute(ArrayList<DirectedGraphNode> graph,
DirectedGraphNode s, DirectedGraphNode t) {
Set<DirectedGraphNode> visited = new HashSet<DirectedGraphNode>();
return dfs(graph, s, t, visited);
}
public boolean dfs(ArrayList<DirectedGraphNode> graph,
DirectedGraphNode s, DirectedGraphNode t,
Set<DirectedGraphNode> visited) {
if (s == t) {
return true;
} else {
// corner cases
if (s == null || t == null) return false;
// flag visited node, avoid cylic
visited.add(s);
// compare unvisited neighbor nodes recursively
if (s.neighbors.size() > 0) {
for (DirectedGraphNode node : s.neighbors) {
if (visited.contains(node)) continue;
if (dfs(graph, node, t, visited)) return true;
}
}
}
return false;
}
}
~~~
### 源码分析
根据构造函数的实现,Java 中判断是否有邻居节点时使用`.size`,而不是`null`. 注意深搜前检测是否被处理过。行
~~~
if (dfs(graph, node, t, visited)) return true;
~~~
中注意不是直接 return, 只在为 true 时返回。
### 复杂度分析
遍历所有点及边,时间复杂度为 O(V+E)O(V+E)O(V+E).
### 题解2 - [BFS](# "Breadth-First Search, 广度优先搜索")
除了深搜处理邻居节点,我们也可以采用 [BFS](# "Breadth-First Search, 广度优先搜索") 结合队列处理,优点是不会爆栈,缺点是空间复杂度稍高和实现复杂点。
### Java
~~~
/**
* Definition for Directed graph.
* class DirectedGraphNode {
* int label;
* ArrayList<DirectedGraphNode> neighbors;
* DirectedGraphNode(int x) {
* label = x;
* neighbors = new ArrayList<DirectedGraphNode>();
* }
* }
*/
public class Solution {
/**
* @param graph: A list of Directed graph node
* @param s: the starting Directed graph node
* @param t: the terminal Directed graph node
* @return: a boolean value
*/
public boolean hasRoute(ArrayList<DirectedGraphNode> graph,
DirectedGraphNode s, DirectedGraphNode t) {
if (graph == null || s == null || t == null) return false;
Queue<DirectedGraphNode> q = new LinkedList<DirectedGraphNode>();
Set<DirectedGraphNode> visited = new HashSet<DirectedGraphNode>();
q.offer(s);
while (!q.isEmpty()) {
int qLen = q.size();
for (int i = 0; i < qLen; i++) {
DirectedGraphNode node = q.poll();
visited.add(node);
if (node == t) return true;
// push neighbors into queue
if (node.neighbors.size() > 0) {
for (DirectedGraphNode n : node.neighbors) {
// avoid cylic
if (visited.contains(n)) continue;
q.offer(n);
}
}
}
}
return false;
}
}
~~~
### 源码分析
同题解一。
### 复杂度分析
时间复杂度同题解一,也是 O(V+E)O(V+E)O(V+E), 空间复杂度最坏情况下为两层多叉树,为 O(V+E)O(V+E)O(V+E).
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume