企业🤖AI智能体构建引擎,智能编排和调试,一键部署,支持私有化部署方案 广告
# Construct Binary Tree from Inorder and Postorder Traversal ### Source - lintcode: [(72) Construct Binary Tree from Inorder and Postorder Traversal](http://www.lintcode.com/en/problem/construct-binary-tree-from-inorder-and-postorder-traversal/) ~~~ Given inorder and postorder traversal of a tree, construct the binary tree. Example Given inorder [1,2,3] and postorder [1,3,2], return a tree: 2 / \ 1 3 Note You may assume that duplicates do not exist in the tree. ~~~ ### 题解 和题 [Construct Binary Tree from Preorder and Inorder Traversal](http://algorithm.yuanbin.me/zh-cn/binary_tree/construct_binary_tree_from_preorder_and_inorder_traversal.html) 几乎一致,关键在于找到中序遍历中的根节点和左右子树,递归解决。 ### Java ~~~ /** * Definition of TreeNode: * public class TreeNode { * public int val; * public TreeNode left, right; * public TreeNode(int val) { * this.val = val; * this.left = this.right = null; * } * } */ public class Solution { /** *@param inorder : A list of integers that inorder traversal of a tree *@param postorder : A list of integers that postorder traversal of a tree *@return : Root of a tree */ public TreeNode buildTree(int[] inorder, int[] postorder) { if (inorder == null || postorder == null) return null; if (inorder.length == 0 || postorder.length == 0) return null; if (inorder.length != postorder.length) return null; TreeNode root = helper(inorder, 0, inorder.length - 1, postorder, 0, postorder.length - 1); return root; } private TreeNode helper(int[] inorder, int instart, int inend, int[] postorder, int poststart, int postend) { // corner cases if (instart > inend || poststart > postend) return null; // build root TreeNode int root_val = postorder[postend]; TreeNode root = new TreeNode(root_val); // find index of root_val in inorder[] int index = findIndex(inorder, instart, inend, root_val); // build left subtree root.left = helper(inorder, instart, index - 1, postorder, poststart, poststart + index - instart - 1); // build right subtree root.right = helper(inorder, index + 1, inend, postorder, poststart + index - instart, postend - 1); return root; } private int findIndex(int[] nums, int start, int end, int target) { for (int i = start; i <= end; i++) { if (nums[i] == target) return i; } return -1; } } ~~~ ### 源码分析 找根节点的方法作为私有方法,辅助函数需要注意索引范围。 ### 复杂度分析 找根节点近似 O(n)O(n)O(n), 递归遍历整个数组,嵌套找根节点的方法,故总的时间复杂度为 O(n2)O(n^2)O(n2).