# Maximum Subarray
### Source
- leetcode: [Maximum Subarray | LeetCode OJ](https://leetcode.com/problems/maximum-subarray/)
- lintcode: [(41) Maximum Subarray](http://www.lintcode.com/en/problem/maximum-subarray/)
~~~
Given an array of integers,
find a contiguous subarray which has the largest sum.
Example
Given the array [−2,2,−3,4,−1,2,1,−5,3],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.
Note
The subarray should contain at least one number.
Challenge
Can you do it in time complexity O(n)?
~~~
### 题解1 - 贪心
求最大子数组和,即求区间和的最大值,不同子区间共有约 n2n^2n2 中可能,遍历虽然可解,但是时间复杂度颇高。
这里首先介绍一种巧妙的贪心算法,用`sum`表示当前子数组和,`maxSum`表示求得的最大子数组和。当`sum <= 0`时,累加数组中的元素只会使得到的和更小,故此时应将此部分和丢弃,使用此时遍历到的数组元素替代。需要注意的是由于有`maxSum`更新`sum`, 故直接丢弃小于0的`sum`并不会对最终结果有影响。即不会漏掉前面的和比后面的元素大的情况。
### Java
~~~
public class Solution {
/**
* @param nums: A list of integers
* @return: A integer indicate the sum of max subarray
*/
public int maxSubArray(ArrayList<Integer> nums) {
// -1 is not proper for illegal input
if (nums == null || nums.isEmpty()) return -1;
int sum = 0, maxSub = Integer.MIN_VALUE;
for (int num : nums) {
// drop negtive sum
sum = Math.max(sum, 0);
sum += num;
// update maxSub
maxSub = Math.max(maxSub, sum);
}
return maxSub;
}
}
~~~
### 源码分析
贪心的实现较为巧妙,需要`sum`和`maxSub`配合运作才能正常工作。
### 复杂度分析
遍历一次数组,时间复杂度 O(n)O(n)O(n), 使用了几个额外变量,空间复杂度 O(1)O(1)O(1).
### 题解2 - 动态规划1(区间和)
求最大/最小这种字眼往往都可以使用动态规划求解,此题为单序列动态规划。我们可以先求出到索引 i 的子数组和,然后用子数组和的最大值减去最小值,最后返回最大值即可。用这种动态规划需要注意初始化条件和求和顺序。
### Java
~~~
public class Solution {
/**
* @param nums: A list of integers
* @return: A integer indicate the sum of max subarray
*/
public int maxSubArray(ArrayList<Integer> nums) {
// -1 is not proper for illegal input
if (nums == null || nums.isEmpty()) return -1;
int sum = 0, minSum = 0, maxSub = Integer.MIN_VALUE;
for (int num : nums) {
minSum = Math.min(minSum, sum);
sum += num;
maxSub = Math.max(maxSub, sum - minSum);
}
return maxSub;
}
}
~~~
### 源码分析
首先求得当前的最小子数组和,初始化为0,随后比较子数组和减掉最小子数组和的差值和最大区间和,并更新最大区间和。
### 复杂度分析
时间复杂度 O(n)O(n)O(n), 使用了类似滚动数组的处理方式,空间复杂度 O(1)O(1)O(1).
### 题解3 - 动态规划2(局部与全局)
这种动规的实现和题解1 的思想几乎一模一样,只不过这里用局部最大值和全局最大值两个数组来表示。
### Java
~~~
public class Solution {
/**
* @param nums: A list of integers
* @return: A integer indicate the sum of max subarray
*/
public int maxSubArray(ArrayList<Integer> nums) {
// -1 is not proper for illegal input
if (nums == null || nums.isEmpty()) return -1;
int size = nums.size();
int[] local = new int[size];
int[] global = new int[size];
local[0] = nums.get(0);
global[0] = nums.get(0);
for (int i = 1; i < size; i++) {
// drop local[i - 1] < 0
local[i] = Math.max(nums.get(i), local[i - 1] + nums.get(i));
// update global with local
global[i] = Math.max(global[i - 1], local[i]);
}
return global[size - 1];
}
}
~~~
### 源码分析
由于局部最大值需要根据之前的局部值是否大于0进行更新,故方便起见初始化 local 和 global 数组的第一个元素为数组第一个元素。
### 复杂度分析
时间复杂度 O(n)O(n)O(n), 空间复杂度也为 O(n)O(n)O(n).
### Reference
- 《剑指 Offer》第五章
- [Maximum Subarray 参考程序 Java/C++/Python](http://www.jiuzhang.com/solutions/maximum-subarray/)
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume