# Search in Rotated Sorted Array
### Source
- leetcode: [Search in Rotated Sorted Array | LeetCode OJ](https://leetcode.com/problems/search-in-rotated-sorted-array/)
- lintcode: [(62) Search in Rotated Sorted Array](http://www.lintcode.com/en/problem/search-in-rotated-sorted-array/)
### Problem
Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i.e., `0 1 2 4 5 6 7` might become `4 5 6 7 0 1 2`).
You are given a target value to search. If found in the array return itsindex, otherwise return -1.
You may assume no duplicate exists in the array.
#### Example
For `[4, 5, 1, 2, 3]` and `target=1`, return `2`.
For `[4, 5, 1, 2, 3]` and `target=0`, return `-1`.
#### Challenge
O(logN) time
### 题解 - 找到有序数组
对于旋转数组的分析可使用画图的方法,如下图所示,升序数组经旋转后可能为如下两种形式。
![Rotated Array](https://box.kancloud.cn/2015-10-24_562b1f420c27a.png)
对于有序数组,使用二分搜索比较方便。分析题中的数组特点,旋转后初看是乱序数组,但仔细一看其实里面是存在两段有序数组的。刚开始做这道题时可能会去比较`target`和`A[mid]`, 但分析起来异常复杂。**该题较为巧妙的地方在于如何找出旋转数组中的局部有序数组,并使用二分搜索解之。**结合实际数组在纸上分析较为方便。
### C++
~~~
/**
* 本代码fork自
* http://www.jiuzhang.com/solutions/search-in-rotated-sorted-array/
*/
class Solution {
/**
* param A : an integer ratated sorted array
* param target : an integer to be searched
* return : an integer
*/
public:
int search(vector<int> &A, int target) {
if (A.empty()) {
return -1;
}
vector<int>::size_type start = 0;
vector<int>::size_type end = A.size() - 1;
vector<int>::size_type mid;
while (start + 1 < end) {
mid = start + (end - start) / 2;
if (target == A[mid]) {
return mid;
}
if (A[start] < A[mid]) {
// situation 1, numbers between start and mid are sorted
if (A[start] <= target && target < A[mid]) {
end = mid;
} else {
start = mid;
}
} else {
// situation 2, numbers between mid and end are sorted
if (A[mid] < target && target <= A[end]) {
start = mid;
} else {
end = mid;
}
}
}
if (A[start] == target) {
return start;
}
if (A[end] == target) {
return end;
}
return -1;
}
};
~~~
### Java
~~~
public class Solution {
/**
*@param A : an integer rotated sorted array
*@param target : an integer to be searched
*return : an integer
*/
public int search(int[] A, int target) {
if (A == null || A.length == 0) return -1;
int lb = 0, ub = A.length - 1;
while (lb + 1 < ub) {
int mid = lb + (ub - lb) / 2;
if (A[mid] == target) return mid;
if (A[mid] > A[lb]) {
// case1: numbers between lb and mid are sorted
if (A[lb] <= target && target <= A[mid]) {
ub = mid;
} else {
lb = mid;
}
} else {
// case2: numbers between mid and ub are sorted
if (A[mid] <= target && target <= A[ub]) {
lb = mid;
} else {
ub = mid;
}
}
}
if (A[lb] == target) {
return lb;
} else if (A[ub] == target) {
return ub;
}
return -1;
}
}
~~~
### 源码分析
1. 若`target == A[mid]`,索引找到,直接返回
1. 寻找局部有序数组,分析`A[mid]`和两段有序的数组特点,由于旋转后前面有序数组最小值都比后面有序数组最大值大。故若`A[start] < A[mid]`成立,则start与mid间的元素必有序(要么是前一段有序数组,要么是后一段有序数组,还有可能是未旋转数组)。
1. 接着在有序数组`A[start]~A[mid]`间进行二分搜索,但能在`A[start]~A[mid]`间搜索的前提是`A[start] <= target <= A[mid]`。
1. 接着在有序数组`A[mid]~A[end]`间进行二分搜索,注意前提条件。
1. 搜索完毕时索引若不是mid或者未满足while循环条件,则测试A[start]或者A[end]是否满足条件。
1. 最后若未找到满足条件的索引,则返回-1.
### 复杂度分析
分两段二分,时间复杂度仍近似为 O(logn)O(\log n)O(logn).
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume