# Lowest Common Ancestor
### Source
- lintcode: [(88) Lowest Common Ancestor](http://www.lintcode.com/en/problem/lowest-common-ancestor/)
~~~
Given the root and two nodes in a Binary Tree. Find the lowest common ancestor(LCA) of the two nodes.
The lowest common ancestor is the node with largest depth which is the ancestor of both nodes.
Example
4
/ \
3 7
/ \
5 6
For 3 and 5, the LCA is 4.
For 5 and 6, the LCA is 7.
For 6 and 7, the LCA is 7.
~~~
### 题解1 - 自底向上
初次接触这种题可能会没有什么思路,在没有思路的情况下我们就从简单例子开始分析!首先看看`3`和`5`,这两个节点分居根节点`4`的两侧,如果可以从子节点往父节点递推,那么他们将在根节点`4`处第一次重合;再来看看`5`和`6`,这两个都在根节点`4`的右侧,沿着父节点往上递推,他们将在节点`7`处第一次重合;最后来看看`6`和`7`,此时由于`7`是`6`的父节点,故`7`即为所求。从这三个基本例子我们可以总结出两种思路——自顶向下(从前往后递推)和自底向上(从后往前递推)。
顺着上述实例的分析,我们首先看看自底向上的思路,自底向上的实现用一句话来总结就是——如果遍历到的当前节点是 A/B 中的任意一个,那么我们就向父节点汇报此节点,否则递归到节点为空时返回空值。具体来说会有如下几种情况:
1. 当前节点不是两个节点中的任意一个,此时应判断左右子树的返回结果。
- 若左右子树均返回非空节点,那么当前节点一定是所求的根节点,将当前节点逐层向前汇报。// 两个节点分居树的两侧
- 若左右子树仅有一个子树返回非空节点,则将此非空节点向父节点汇报。// 节点仅存在于树的一侧
- 若左右子树均返回`NULL`, 则向父节点返回`NULL`. // 节点不在这棵树中
1. 当前节点即为两个节点中的一个,此时向父节点返回当前节点。
根据此递归模型容易看出应该使用中序遍历来实现。
### C++ Recursion From Bottom to Top
~~~
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param root: The root of the binary search tree.
* @param A and B: two nodes in a Binary.
* @return: Return the least common ancestor(LCA) of the two nodes.
*/
TreeNode *lowestCommonAncestor(TreeNode *root, TreeNode *A, TreeNode *B) {
// return either A or B or NULL
if (NULL == root || root == A || root == B) return root;
TreeNode *left = lowestCommonAncestor(root->left, A, B);
TreeNode *right = lowestCommonAncestor(root->right, A, B);
// A and B are on both sides
if ((NULL != left) && (NULL != right)) return root;
// either left or right or NULL
return (NULL != left) ? left : right;
}
};
~~~
### 源码分析
结合例子和递归的整体思想去理解代码,在`root == A || root == B`后即层层上浮(自底向上),直至找到最终的最小公共祖先节点。
最后一行`return (NULL != left) ? left : right;`将非空的左右子树节点和空值都包含在内了,十分精炼![leetcode](#)
****> 细心的你也许会发现,其实题解的分析漏掉了一种情况,即树中可能只含有 A/B 中的一个节点!这种情况应该返回空值,但上述实现均返回非空节点。重复节点就不考虑了,太复杂了...
### 题解 - 自底向上(计数器)
为了解决上述方法可能导致误判的情况,我们可以对返回结果添加计数器来解决。**由于此计数器的值只能由子树向上递推,故不能再使用中序遍历,而应该改用后序遍历。**
定义`pair<TreeNode *, int> result(node, counter)`表示遍历到某节点时的返回结果,返回的`node`表示LCA 路径中的可能的最小节点,相应的计数器`counter`则表示目前和`A`或者`B`匹配的节点数,若计数器为2,则表示已匹配过两次,该节点即为所求,若只匹配过一次,还需进一步向上递推。表述地可能比较模糊,还是看看代码吧。
### C++ Post-order(counter)
~~~
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/
class Solution {
public:
/**
* @param root: The root of the binary search tree.
* @param A and B: two nodes in a Binary.
* @return: Return the least common ancestor(LCA) of the two nodes.
*/
TreeNode *lowestCommonAncestor(TreeNode *root, TreeNode *A, TreeNode *B) {
if ((NULL == A) || (NULL == B)) return NULL;
pair<TreeNode *, int> result = helper(root, A, B);
if (A != B) {
return (2 == result.second) ? result.first : NULL;
} else {
return (1 == result.second) ? result.first : NULL;
}
}
private:
pair<TreeNode *, int> helper(TreeNode *root, TreeNode *A, TreeNode *B) {
TreeNode * node = NULL;
if (NULL == root) return make_pair(node, 0);
pair<TreeNode *, int> left = helper(root->left, A, B);
pair<TreeNode *, int> right = helper(root->right, A, B);
// return either A or B
int count = max(left.second, right.second);
if (A == root || B == root) return make_pair(root, ++count);
// A and B are on both sides
if (NULL != left.first && NULL != right.first) return make_pair(root, 2);
// return either left or right or NULL
return (NULL != left.first) ? left : right;
}
};
~~~
### 源码分析
在`A == B`时,计数器返回1的节点即为我们需要的节点,否则只取返回2的节点,如此便保证了该方法的正确性。对这种实现还有问题的在下面评论吧。
### Reference
- leetcode
> .
[Lowest Common Ancestor of a Binary Tree Part I | LeetCode](http://articles.leetcode.com/2011/07/lowest-common-ancestor-of-a-binary-tree-part-i.html)
> - 清晰易懂的题解和实现。
[ ↩](# "Jump back to footnote [leetcode] in the text.")
- [Lowest Common Ancestor of a Binary Tree Part II | LeetCode](http://articles.leetcode.com/2011/07/lowest-common-ancestor-of-a-binary-tree-part-ii.html) - 如果存在指向父节点的指针,我们能否有更好的解决方案?
- [Lowest Common Ancestor of a Binary Search Tree (BST) | LeetCode](http://articles.leetcode.com/2011/07/lowest-common-ancestor-of-a-binary-search-tree.html) - 二叉搜索树中求最小公共祖先。
- [Lowest Common Ancestor | 九章算法](http://www.jiuzhang.com/solutions/lowest-common-ancestor/) - 第一种和第二种方法可以在知道父节点时使用,但第二种 Divide and Conquer 才是本题需要的思想(第二种解法可以轻易改成不需要 parent 的指针的)。
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume