# Merge Sorted Array II
### Source
- lintcode: [(64) Merge Sorted Array II](http://www.lintcode.com/en/problem/merge-sorted-array-ii/)
~~~
Merge two given sorted integer array A and B into a new sorted integer array.
Example
A=[1,2,3,4]
B=[2,4,5,6]
return [1,2,2,3,4,4,5,6]
Challenge
How can you optimize your algorithm
if one array is very large and the other is very small?
~~~
### 题解
上题要求 in-place, 此题要求返回新数组。由于可以生成新数组,故使用常规思路按顺序遍历即可。
### Python
~~~
class Solution:
#@param A and B: sorted integer array A and B.
#@return: A new sorted integer array
def mergeSortedArray(self, A, B):
if A is None or len(A) == 0:
return B
if B is None or len(B) == 0:
return A
C = []
aLen, bLen = len(A), len(B)
i, j = 0, 0
while i < aLen and j < bLen:
if A[i] < B[j]:
C.append(A[i])
i += 1
else:
C.append(B[j])
j += 1
# A has elements left
while i < aLen:
C.append(A[i])
i += 1
# B has elements left
while j < bLen:
C.append(B[j])
j += 1
return C
~~~
### C++
~~~
class Solution {
public:
/**
* @param A and B: sorted integer array A and B.
* @return: A new sorted integer array
*/
vector<int> mergeSortedArray(vector<int> &A, vector<int> &B) {
if (A.empty()) return B;
if (B.empty()) return A;
int aLen = A.size(), bLen = B.size();
vector<int> C;
int i = 0, j = 0;
while (i < aLen && j < bLen) {
if (A[i] < B[j]) {
C.push_back(A[i]);
++i;
} else {
C.push_back(B[j]);
++j;
}
}
// A has elements left
while (i < aLen) {
C.push_back(A[i]);
++i;
}
// B has elements left
while (j < bLen) {
C.push_back(B[j]);
++j;
}
return C;
}
};
~~~
### Java
~~~
class Solution {
/**
* @param A and B: sorted integer array A and B.
* @return: A new sorted integer array
*/
public ArrayList<Integer> mergeSortedArray(ArrayList<Integer> A, ArrayList<Integer> B) {
if (A == null || A.isEmpty()) return B;
if (B == null || B.isEmpty()) return A;
ArrayList<Integer> C = new ArrayList<Integer>();
int aLen = A.size(), bLen = B.size();
int i = 0, j = 0;
while (i < aLen && j < bLen) {
if (A.get(i) < B.get(j)) {
C.add(A.get(i));
i++;
} else {
C.add(B.get(j));
j++;
}
}
// A has elements left
while (i < aLen) {
C.add(A.get(i));
i++;
}
// B has elements left
while (j < bLen) {
C.add(B.get(j));
j++;
}
return C;
}
}
~~~
### 源码分析
分三步走,后面分别单独处理剩余的元素。
### 复杂度分析
遍历 A, B 数组各一次,时间复杂度 O(n)O(n)O(n), 空间复杂度 O(1)O(1)O(1).
#### Challenge
两个倒排列表,一个特别大,一个特别小,如何 Merge?此时应该考虑用一个二分法插入小的,即内存拷贝。
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume