# Subsets - 子集
### Source
- leetcode: [Subsets | LeetCode OJ](https://leetcode.com/problems/subsets/)
- lintcode: [(17) Subsets](http://www.lintcode.com/en/problem/subsets/)
### Problem
Given a set of distinct integers, *nums*, return all possible subsets.
#### Note:
- Elements in a subset must be in non-descending order.
- The solution set must not contain duplicate subsets.
For example,
If *nums* = `[1,2,3]`, a solution is:
~~~
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
~~~
### 题解
子集类问题类似Combination,以输入数组`[1, 2, 3]`分析,根据题意,最终返回结果中子集类的元素应该按照升序排列,故首先需要对原数组进行排序。题目的第二点要求是子集不能重复,至此原题即转化为数学中的组合问题。我们首先尝试使用 [DFS](# "Depth-First Search, 深度优先搜索") 进行求解,大致步骤如下:
1. `[1] -> [1, 2] -> [1, 2, 3]`
1. `[2] -> [2, 3]`
1. `[3]`
将上述过程转化为代码即为对数组遍历,每一轮都保存之前的结果并将其依次加入到最终返回结果中。
### Python
~~~
class Solution:
# @param {integer[]} nums
# @return {integer[][]}
def subsets(self, nums):
if nums is None:
return []
result = []
nums.sort()
self.dfs(nums, 0, [], result)
return result
def dfs(self, nums, pos, list_temp, ret):
# append new object with []
ret.append([] + list_temp)
for i in xrange(pos, len(nums)):
list_temp.append(nums[i])
self.dfs(nums, i + 1, list_temp, ret)
list_temp.pop()
~~~
### C++
~~~
class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
vector<vector<int> > result;
if (nums.empty()) return result;
sort(nums.begin(), nums.end());
vector<int> list;
dfs(nums, 0, list, result);
return result;
}
private:
void dfs(vector<int>& nums, int pos, vector<int> &list,
vector<vector<int> > &ret) {
ret.push_back(list);
for (int i = pos; i < nums.size(); ++i) {
list.push_back(nums[i]);
dfs(nums, i + 1, list, ret);
list.pop_back();
}
}
};
~~~
### Java
~~~
public class Solution {
public List<List<Integer>> subsets(int[] nums) {
List<List<Integer>> result = new ArrayList<List<Integer>>();
List<Integer> list = new ArrayList<Integer>();
if (nums == null || nums.length == 0) {
return result;
}
Arrays.sort(nums);
dfs(nums, 0, list, result);
return result;
}
private void dfs(int[] nums, int pos, List<Integer> list,
List<List<Integer>> ret) {
// add temp result first
ret.add(new ArrayList<Integer>(list));
for (int i = pos; i < nums.length; i++) {
list.add(nums[i]);
dfs(nums, i + 1, list, ret);
list.remove(list.size() - 1);
}
}
}
~~~
### 源码分析
Java 和 Python 的代码中在将临时list 添加到最终结果时新生成了对象,(Python 使用`[] +`), 否则最终返回结果将随着`list` 的变化而变化。
**Notice: backTrack(num, i + 1, list, ret);中的『i + 1』不可误写为『pos + 1』,因为`pos`用于每次大的循环,`i`用于内循环,第一次写subsets的时候在这坑了很久... :(**
回溯法可用图示和函数运行的堆栈图来理解,强烈建议**使用图形和递归的思想**分析,以数组`[1, 2, 3]`进行分析。下图所示为`list`及`result`动态变化的过程,箭头向下表示`list.add`及`result.add`操作,箭头向上表示`list.remove`操作。
![Subsets运行递归调用图](https://box.kancloud.cn/2015-10-24_562b1f5a2e2ba.jpg)
### 复杂度分析
对原有数组排序,时间复杂度近似为 O(nlogn)O(n \log n)O(nlogn). 状态数为所有可能的组合数 O(2n)O(2^n)O(2n), 生成每个状态所需的时间复杂度近似为 O(1)O(1)O(1), 如`[1] -> [1, 2]`, 故总的时间复杂度近似为 O(2n)O(2^n)O(2n).
使用了临时空间`list`保存中间结果,`list` 最大长度为数组长度,故空间复杂度近似为 O(n)O(n)O(n).
### Reference
- [[NineChap 1.2] Permutation - Woodstock Blog](http://okckd.github.io/blog/2014/06/12/NineChap-Permutation/)
- [九章算法 - subsets模板](http://www.jiuzhang.com/solutions/subsets/)
- [LeetCode: Subsets 解题报告 - Yu's Garden - 博客园](http://www.cnblogs.com/yuzhangcmu/p/4211815.html)
- Preface
- Part I - Basics
- Basics Data Structure
- String
- Linked List
- Binary Tree
- Huffman Compression
- Queue
- Heap
- Stack
- Set
- Map
- Graph
- Basics Sorting
- Bubble Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Quick Sort
- Heap Sort
- Bucket Sort
- Counting Sort
- Radix Sort
- Basics Algorithm
- Divide and Conquer
- Binary Search
- Math
- Greatest Common Divisor
- Prime
- Knapsack
- Probability
- Shuffle
- Basics Misc
- Bit Manipulation
- Part II - Coding
- String
- strStr
- Two Strings Are Anagrams
- Compare Strings
- Anagrams
- Longest Common Substring
- Rotate String
- Reverse Words in a String
- Valid Palindrome
- Longest Palindromic Substring
- Space Replacement
- Wildcard Matching
- Length of Last Word
- Count and Say
- Integer Array
- Remove Element
- Zero Sum Subarray
- Subarray Sum K
- Subarray Sum Closest
- Recover Rotated Sorted Array
- Product of Array Exclude Itself
- Partition Array
- First Missing Positive
- 2 Sum
- 3 Sum
- 3 Sum Closest
- Remove Duplicates from Sorted Array
- Remove Duplicates from Sorted Array II
- Merge Sorted Array
- Merge Sorted Array II
- Median
- Partition Array by Odd and Even
- Kth Largest Element
- Binary Search
- Binary Search
- Search Insert Position
- Search for a Range
- First Bad Version
- Search a 2D Matrix
- Search a 2D Matrix II
- Find Peak Element
- Search in Rotated Sorted Array
- Search in Rotated Sorted Array II
- Find Minimum in Rotated Sorted Array
- Find Minimum in Rotated Sorted Array II
- Median of two Sorted Arrays
- Sqrt x
- Wood Cut
- Math and Bit Manipulation
- Single Number
- Single Number II
- Single Number III
- O1 Check Power of 2
- Convert Integer A to Integer B
- Factorial Trailing Zeroes
- Unique Binary Search Trees
- Update Bits
- Fast Power
- Hash Function
- Count 1 in Binary
- Fibonacci
- A plus B Problem
- Print Numbers by Recursion
- Majority Number
- Majority Number II
- Majority Number III
- Digit Counts
- Ugly Number
- Plus One
- Linked List
- Remove Duplicates from Sorted List
- Remove Duplicates from Sorted List II
- Remove Duplicates from Unsorted List
- Partition List
- Two Lists Sum
- Two Lists Sum Advanced
- Remove Nth Node From End of List
- Linked List Cycle
- Linked List Cycle II
- Reverse Linked List
- Reverse Linked List II
- Merge Two Sorted Lists
- Merge k Sorted Lists
- Reorder List
- Copy List with Random Pointer
- Sort List
- Insertion Sort List
- Check if a singly linked list is palindrome
- Delete Node in the Middle of Singly Linked List
- Rotate List
- Swap Nodes in Pairs
- Remove Linked List Elements
- Binary Tree
- Binary Tree Preorder Traversal
- Binary Tree Inorder Traversal
- Binary Tree Postorder Traversal
- Binary Tree Level Order Traversal
- Binary Tree Level Order Traversal II
- Maximum Depth of Binary Tree
- Balanced Binary Tree
- Binary Tree Maximum Path Sum
- Lowest Common Ancestor
- Invert Binary Tree
- Diameter of a Binary Tree
- Construct Binary Tree from Preorder and Inorder Traversal
- Construct Binary Tree from Inorder and Postorder Traversal
- Subtree
- Binary Tree Zigzag Level Order Traversal
- Binary Tree Serialization
- Binary Search Tree
- Insert Node in a Binary Search Tree
- Validate Binary Search Tree
- Search Range in Binary Search Tree
- Convert Sorted Array to Binary Search Tree
- Convert Sorted List to Binary Search Tree
- Binary Search Tree Iterator
- Exhaustive Search
- Subsets
- Unique Subsets
- Permutations
- Unique Permutations
- Next Permutation
- Previous Permuation
- Unique Binary Search Trees II
- Permutation Index
- Permutation Index II
- Permutation Sequence
- Palindrome Partitioning
- Combinations
- Combination Sum
- Combination Sum II
- Minimum Depth of Binary Tree
- Word Search
- Dynamic Programming
- Triangle
- Backpack
- Backpack II
- Minimum Path Sum
- Unique Paths
- Unique Paths II
- Climbing Stairs
- Jump Game
- Word Break
- Longest Increasing Subsequence
- Palindrome Partitioning II
- Longest Common Subsequence
- Edit Distance
- Jump Game II
- Best Time to Buy and Sell Stock
- Best Time to Buy and Sell Stock II
- Best Time to Buy and Sell Stock III
- Best Time to Buy and Sell Stock IV
- Distinct Subsequences
- Interleaving String
- Maximum Subarray
- Maximum Subarray II
- Longest Increasing Continuous subsequence
- Longest Increasing Continuous subsequence II
- Graph
- Find the Connected Component in the Undirected Graph
- Route Between Two Nodes in Graph
- Topological Sorting
- Word Ladder
- Bipartial Graph Part I
- Data Structure
- Implement Queue by Two Stacks
- Min Stack
- Sliding Window Maximum
- Longest Words
- Heapify
- Problem Misc
- Nuts and Bolts Problem
- String to Integer
- Insert Interval
- Merge Intervals
- Minimum Subarray
- Matrix Zigzag Traversal
- Valid Sudoku
- Add Binary
- Reverse Integer
- Gray Code
- Find the Missing Number
- Minimum Window Substring
- Continuous Subarray Sum
- Continuous Subarray Sum II
- Longest Consecutive Sequence
- Part III - Contest
- Google APAC
- APAC 2015 Round B
- Problem A. Password Attacker
- Microsoft
- Microsoft 2015 April
- Problem A. Magic Box
- Problem B. Professor Q's Software
- Problem C. Islands Travel
- Problem D. Recruitment
- Microsoft 2015 April 2
- Problem A. Lucky Substrings
- Problem B. Numeric Keypad
- Problem C. Spring Outing
- Microsoft 2015 September 2
- Problem A. Farthest Point
- Appendix I Interview and Resume
- Interview
- Resume