# 《构造二叉树》专题 # 构造二叉树系列 构造二叉树是一个常见的二叉树考点,相比于直接考察二叉树的遍历,这种题目的难度会更大。截止到目前(2020-02-08) LeetCode 关于构造二叉树一共有三道题目,分别是: - [105. 从前序与中序遍历序列构造二叉树](https://leetcode-cn.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/) - [106. 从中序与后序遍历序列构造二叉树](https://leetcode-cn.com/problems/construct-binary-tree-from-inorder-and-postorder-traversal/) - [889. 根据前序和后序遍历构造二叉树](https://leetcode-cn.com/problems/construct-binary-tree-from-preorder-and-postorder-traversal/) 今天就让我们用一个套路一举攻破他们。 ## 105. 从前序与中序遍历序列构造二叉树 ### 题目描述 ``` <pre class="calibre18">``` 根据一棵树的前序遍历与中序遍历构造二叉树。 注意: 你可以假设树中没有重复的元素。 例如,给出 前序遍历 preorder = [3,9,20,15,7] 中序遍历 inorder = [9,3,15,20,7] 返回如下的二叉树: 3 / \ 9 20 / \ 15 7 ``` ``` ### 思路 我们以题目给出的测试用例来讲解: ![](https://img.kancloud.cn/3f/d9/3fd97e1a73d677b734ff6834f2071d04_1142x490.jpg) 前序遍历是`根左右`,因此 preorder 第一个元素一定整个树的根。由于题目说明了没有重复元素,因此我们可以通过 val 去 inorder 找到根在 inorder 中的索引 i。 而由于中序遍历是`左根右`,我们容易找到 i 左边的都是左子树,i 右边都是右子树。 我使用红色表示根,蓝色表示左子树,绿色表示右子树。 ![](https://img.kancloud.cn/58/b5/58b5a76546087f1a924443b276663f2a_1116x444.jpg) 根据此时的信息,我们能构造的树是这样的: ![](https://img.kancloud.cn/71/93/719358d994f4c4ec0a1e79c4a0435f47_1226x414.jpg) 我们 preorder 继续向后移动一位,这个时候我们得到了第二个根节点”9“,实际上就是左子树的根节点。 ![](https://img.kancloud.cn/90/9f/909feff5a8dd8ef7089865723f82e028_1108x452.jpg) 我们 preorder 继续向后移动一位,这个时候我们得到了第二个根节点”20“,实际上就是右子树的根节点。其中右子树由于个数大于 1,我们无法确定,我们继续执行上述逻辑。 ![](https://img.kancloud.cn/cd/a4/cda4a47c51509fc9ba3c2da86f1a8537_1344x474.jpg) 根据此时的信息,我们能构造的树是这样的: ![](https://img.kancloud.cn/4f/4a/4f4a37ff5601a634807d5f49b122d80c_1144x642.jpg) 我们不断执行上述逻辑即可。简单起见,递归的时候每次我都开辟了新的数组,这个其实是没有必要的,我们可以通过四个变量来记录 inorder 和 preorder 的起始位置即可。 ### 代码 代码支持:Python3 Python3 Code: ``` <pre class="calibre18">``` <span class="hljs-class"><span class="hljs-keyword">class</span> <span class="hljs-title">Solution</span>:</span> <span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">buildTree</span><span class="hljs-params">(self, preorder: List[int], inorder: List[int])</span> -> TreeNode:</span> <span class="hljs-title"># 实际上inorder 和 postorder一定是同时为空的,因此你无论判断哪个都行</span> <span class="hljs-keyword">if</span> <span class="hljs-keyword">not</span> preorder: <span class="hljs-keyword">return</span> <span class="hljs-keyword">None</span> root = TreeNode(preorder[<span class="hljs-params">0</span>]) i = inorder.index(root.val) root.left = self.buildTree(preorder[<span class="hljs-params">1</span>:i + <span class="hljs-params">1</span>], inorder[:i]) root.right = self.buildTree(preorder[i + <span class="hljs-params">1</span>:], inorder[i+<span class="hljs-params">1</span>:]) <span class="hljs-keyword">return</span> root ``` ``` **复杂度分析** - 时间复杂度:由于每次递归我们的 inorder 和 preorder 的总数都会减 1,因此我们要递归 N 次,故时间复杂度为 O(N)O(N)O(N),其中 N 为节点个数。 - 空间复杂度:我们使用了递归,也就是借助了额外的栈空间来完成, 由于栈的深度为 N,因此总的空间复杂度为 O(N)O(N)O(N),其中 N 为节点个数。 > 空间复杂度忽略了开辟数组的内存消耗。 ## 106. 从中序与后序遍历序列构造二叉树 如果你会了上面的题目,那么这个题目对你来说也不是难事,我们来看下。 ### 题目描述 ``` <pre class="calibre18">``` 根据一棵树的中序遍历与后序遍历构造二叉树。 注意: 你可以假设树中没有重复的元素。 例如,给出 中序遍历 inorder = [9,3,15,20,7] 后序遍历 postorder = [9,15,7,20,3] 返回如下的二叉树: 3 / \ 9 20 / \ 15 7 ``` ``` ### 思路 我们以题目给出的测试用例来讲解: ![](https://img.kancloud.cn/4b/8d/4b8d2cc9be7a57e838ec740e62d8ddd9_1050x452.jpg) 后序遍历是`左右根`,因此 postorder 最后一个元素一定整个树的根。由于题目说明了没有重复元素,因此我们可以通过 val 去 inorder 找到根在 inorder 中的索引 i。 而由于中序遍历是`左根右`,我们容易找到 i 左边的都是左子树,i 右边都是右子树。 我使用红色表示根,蓝色表示左子树,绿色表示右子树。 ![](https://img.kancloud.cn/07/ba/07ba82aadc2eb45d71dfb4e0653324f1_1196x484.jpg) 根据此时的信息,我们能构造的树是这样的: ![](https://img.kancloud.cn/71/93/719358d994f4c4ec0a1e79c4a0435f47_1226x414.jpg) 其中右子树由于个数大于 1,我们无法确定,我们继续执行上述逻辑。我们 postorder 继续向前移动一位,这个时候我们得到了第二个根节点”20“,实际上就是右子树的根节点。 ![](https://img.kancloud.cn/d0/03/d003b54dbfbb746dff754fd193dc1d40_1204x496.jpg) 根据此时的信息,我们能构造的树是这样的: ![](https://img.kancloud.cn/4f/4a/4f4a37ff5601a634807d5f49b122d80c_1144x642.jpg) 我们不断执行上述逻辑即可。简单起见,递归的时候每次我都开辟了新的数组,这个其实是没有必要的,我们可以通过四个变量来记录 inorder 和 postorder 的起始位置即可。 ### 代码 代码支持:Python3 Python3 Code: ``` <pre class="calibre18">``` <span class="hljs-class"><span class="hljs-keyword">class</span> <span class="hljs-title">Solution</span>:</span> <span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">buildTree</span><span class="hljs-params">(self, inorder: List[int], postorder: List[int])</span> -> TreeNode:</span> <span class="hljs-title"># 实际上inorder 和 postorder一定是同时为空的,因此你无论判断哪个都行</span> <span class="hljs-keyword">if</span> <span class="hljs-keyword">not</span> inorder: <span class="hljs-keyword">return</span> <span class="hljs-keyword">None</span> root = TreeNode(postorder[<span class="hljs-params">-1</span>]) i = inorder.index(root.val) root.left = self.buildTree(inorder[:i], postorder[:i]) root.right = self.buildTree(inorder[i+<span class="hljs-params">1</span>:], postorder[i:<span class="hljs-params">-1</span>]) <span class="hljs-keyword">return</span> root ``` ``` **复杂度分析** - 时间复杂度:由于每次递归我们的 inorder 和 postorder 的总数都会减 1,因此我们要递归 N 次,故时间复杂度为 O(N)O(N)O(N),其中 N 为节点个数。 - 空间复杂度:我们使用了递归,也就是借助了额外的栈空间来完成, 由于栈的深度为 N,因此总的空间复杂度为 O(N)O(N)O(N),其中 N 为节点个数。 > 空间复杂度忽略了开辟数组的内存消耗。 ## 889. 根据前序和后序遍历构造二叉树 ### 题目描述 ``` <pre class="calibre18">``` 返回与给定的前序和后序遍历匹配的任何二叉树。 pre 和 post 遍历中的值是不同的正整数。 示例: 输入:pre = [1,2,4,5,3,6,7], post = [4,5,2,6,7,3,1] 输出:[1,2,3,4,5,6,7] 提示: 1 <= pre.length == post.length <= 30 pre[] 和 post[] 都是 1, 2, ..., pre.length 的排列 每个输入保证至少有一个答案。如果有多个答案,可以返回其中一个。 ``` ``` ### 思路 我们以题目给出的测试用例来讲解: ![](https://img.kancloud.cn/3f/d9/3fd97e1a73d677b734ff6834f2071d04_1142x490.jpg) 前序遍历是`根左右`,因此 preorder 第一个元素一定整个树的根,preorder 第二个元素(如果存在的话)一定是左子树。由于题目说明了没有重复元素,因此我们可以通过 val 去 postorder 找到 pre\[1\]在 postorder 中的索引 i。 而由于后序遍历是`左右根`,因此我们容易得出。 postorder 中的 0 到 i(包含)是左子树,preorder 的 1 到 i+1(包含)也是左子树。 其他部分可以参考上面两题。 ### 代码 代码支持:Python3 Python3 Code: ``` <pre class="calibre18">``` <span class="hljs-class"><span class="hljs-keyword">class</span> <span class="hljs-title">Solution</span>:</span> <span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">constructFromPrePost</span><span class="hljs-params">(self, pre: List[int], post: List[int])</span> -> TreeNode:</span> <span class="hljs-title"># 实际上pre 和 post一定是同时为空的,因此你无论判断哪个都行</span> <span class="hljs-keyword">if</span> <span class="hljs-keyword">not</span> pre: <span class="hljs-keyword">return</span> <span class="hljs-keyword">None</span> node = TreeNode(pre[<span class="hljs-params">0</span>]) <span class="hljs-keyword">if</span> len(pre) == <span class="hljs-params">1</span>: <span class="hljs-keyword">return</span> node i = post.index(pre[<span class="hljs-params">1</span>]) node.left = self.constructFromPrePost(pre[<span class="hljs-params">1</span>:i + <span class="hljs-params">2</span>], post[:i + <span class="hljs-params">1</span>]) node.right = self.constructFromPrePost(pre[i + <span class="hljs-params">2</span>:], post[i + <span class="hljs-params">1</span>:<span class="hljs-params">-1</span>]) <span class="hljs-keyword">return</span> node ``` ``` **复杂度分析** - 时间复杂度:由于每次递归我们的 postorder 和 preorder 的总数都会减 1,因此我们要递归 N 次,故时间复杂度为 O(N)O(N)O(N),其中 N 为节点个数。 - 空间复杂度:我们使用了递归,也就是借助了额外的栈空间来完成, 由于栈的深度为 N,因此总的空间复杂度为 O(N)O(N)O(N),其中 N 为节点个数。 > 空间复杂度忽略了开辟数组的内存消耗。 ## 总结 如果你仔细对比一下的话,会发现我们的思路和代码几乎一模一样。注意到每次递归我们的两个数组个数都会减去 1,因此我们递归终止条件不难写出,并且递归问题规模如何缩小也很容易,那就是数组总长度减去 1。 我们拿最后一个题目来说: ``` <pre class="calibre18">``` node.left = self.constructFromPrePost(pre[<span class="hljs-params">1</span>:i + <span class="hljs-params">2</span>], post[:i + <span class="hljs-params">1</span>]) node.right = self.constructFromPrePost(pre[i + <span class="hljs-params">2</span>:], post[i + <span class="hljs-params">1</span>:<span class="hljs-params">-1</span>]) ``` ``` 我们发现 pre 被拆分为两份,pre\[1:i + 2\]和 pre\[i + 2:\]。很明显总数少了 1,那就是 pre 的第一个元素。 也就是说如果你写出一个,其他一个不用思考也能写出来。 而对于 post 也一样,post\[:i + 1\] 和 post\[i + 1:-1\],很明显总数少了 1,那就是 post 最后一个元素。 这个解题模板足够简洁,并且逻辑清晰,大家可以用我的模板试试~ ## 关注我 更多题解可以访问我的 LeetCode 题解仓库:<https://github.com/azl397985856/leetcode> 。 目前已经 37K star 啦。 大家也可以关注我的公众号《力扣加加》获取更多更新鲜的 LeetCode 题解 ![](https://img.kancloud.cn/cf/0f/cf0fc0dd21e94b443dd8bca6cc15b34b_900x500.jpg)