# 0343. 整数拆分
## 题目地址(343. 整数拆分)
<https://leetcode-cn.com/problems/integer-break/>
## 题目描述
给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。
示例 1:
输入: 2 输出: 1 解释: 2 = 1 + 1, 1 × 1 = 1。 示例 2:
输入: 10 输出: 36 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。 说明: 你可以假设 n 不小于 2 且不大于 58。
## 前置知识
- 递归
- 动态规划
## 公司
- 阿里
- 腾讯
- 百度
- 字节
## 思路
希望通过这篇题解让大家知道“题解区的水有多深”,让大家知道“什么才是好的题解”。
我看了很多人的题解直接就是两句话,然后跟上代码:
```
<pre class="calibre18">```
<span class="hljs-class"><span class="hljs-keyword">class</span> <span class="hljs-title">Solution</span>:</span>
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">integerBreak</span><span class="hljs-params">(self, n: int)</span> -> int:</span>
dp = [<span class="hljs-params">1</span>] * (n + <span class="hljs-params">1</span>)
<span class="hljs-keyword">for</span> i <span class="hljs-keyword">in</span> range(<span class="hljs-params">3</span>, n + <span class="hljs-params">1</span>):
<span class="hljs-keyword">for</span> j <span class="hljs-keyword">in</span> range(<span class="hljs-params">1</span>, i):
dp[i] = max(j * dp[i - j], j * (i - j), dp[i])
<span class="hljs-keyword">return</span> dp[n]
```
```
这种题解说实话,只针对那些”自己会, 然后去题解区看看有没有新的更好的解法的人“。但是大多数看题解的人是那种`自己没思路,不会做的人`。那么这种题解就没什么用了。
我认为`好的题解应该是新手友好的,并且能够将解题人思路完整展现的题解`。比如看到这个题目,我首先想到了什么(对错没有关系),然后头脑中经过怎么样的筛选将算法筛选到具体某一个或某几个。我的最终算法是如何想到的,有没有一些先行知识。
当然我也承认自己有很多题解也是直接给的答案,这对很多人来说用处不大,甚至有可能有反作用,给他们一种”我已经会了“的假象。实际上他们根本不懂解题人本身原本的想法, 也许是写题解的人觉得”这很自然“,也可能”只是为了秀技“。
Ok,下面来讲下`我是如何解这道题的`。
### 抽象
首先看到这道题,自然而然地先对问题进行抽象,这种抽象能力是必须的。LeetCode 实际上有很多这种穿着华丽外表的题,当你把这个衣服扒开的时候,会发现都是差不多的,甚至两个是一样的,这样的例子实际上有很多。 就本题来说,就有一个剑指 Offer 的原题[《剪绳子》](https://leetcode-cn.com/problems/jian-sheng-zi-lcof/)和其本质一样,只是换了描述方式。类似的有力扣 137 和 645 等等,大家可以自己去归纳总结。
> 137 和 645 我贴个之前写的题解 <https://leetcode-cn.com/problems/single-number/solution/zhi-chu-xian-yi-ci-de-shu-xi-lie-wei-yun-suan-by-3/>
**培养自己抽象问题的能力,不管是在算法上还是工程上。** 务必记住这句话!
数学是一门非常抽象的学科,同时也很方便我们抽象问题。为了显得我的题解比较高级,引入一些你们看不懂的数学符号也是很有必要的(开玩笑,没有什么高级数学符号啦)。
> 实际上这道题可以用纯数学角度来解,但是我相信大多数人并不想看。即使你看了,大多人的感受也是“好 nb,然而并没有什么用”。
这道题抽象一下就是:
令: ![](https://img.kancloud.cn/86/96/8696a570ed5b8bbc3b66a0c91c2dfd6f_204x120.jpg)(图 1) 求: ![](https://img.kancloud.cn/e7/1e/e71e1f20934c95bdd2a1c4cdbfa86393_204x114.jpg)(图 2)
## 第一直觉
经过上面的抽象,我的第一直觉这可能是一个数学题,我回想了下数学知识,然后用数学法 AC 了。 数学就是这么简单平凡且枯燥。
然而如果没有数学的加持的情况下,我继续思考怎么做。我想是否可以枚举所有的情况(如图 1),然后对其求最大值(如图 2)。
问题转化为如何枚举所有的情况。经过了几秒钟的思考,我发现这是一个很明显的递归问题。 具体思考过程如下:
- 我们将原问题抽象为 f(n)
- 那么 f(n) 等价于 max(1 \* fn(n - 1), 2 \* f(n - 2), ..., (n - 1) \* f(1))。
用数学公式表示就是:
![](https://img.kancloud.cn/58/1d/581decbef46bffe8818b404d5037cd4f_456x142.jpg)(图 3)
截止目前,是一点点数学 + 一点点递归,我们继续往下看。现在问题是不是就很简单啦?直接翻译图三为代码即可,我们来看下这个时候的代码:
```
<pre class="calibre18">```
<span class="hljs-class"><span class="hljs-keyword">class</span> <span class="hljs-title">Solution</span>:</span>
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">integerBreak</span><span class="hljs-params">(self, n: int)</span> -> int:</span>
<span class="hljs-keyword">if</span> n == <span class="hljs-params">2</span>: <span class="hljs-keyword">return</span> <span class="hljs-params">1</span>
res = <span class="hljs-params">0</span>
<span class="hljs-keyword">for</span> i <span class="hljs-keyword">in</span> range(<span class="hljs-params">1</span>, n):
res = max(res, max(i * self.integerBreak(n - i),i * (n - i)))
<span class="hljs-keyword">return</span> res
```
```
毫无疑问,超时了。原因很简单,就是算法中包含了太多的重复计算。如果经常看我的题解的话,这句话应该不陌生。我随便截一个我之前讲过这个知识点的图。
![](https://img.kancloud.cn/c9/68/c96888eb1eeb6cdd6cffd7956bc5bfd6_1429x1080.jpg)(图 4)
> 原文链接:<https://github.com/azl397985856/leetcode/blob/master/thinkings/dynamic-programming.md>
大家可以尝试自己画图理解一下。
> 看到这里,有没有种殊途同归的感觉呢?
## 考虑优化
如上,我们可以考虑使用记忆化递归的方式来解决。只是用一个 hashtable 存储计算过的值即可。
```
<pre class="calibre18">```
<span class="hljs-class"><span class="hljs-keyword">class</span> <span class="hljs-title">Solution</span>:</span>
<span class="hljs-params"> @lru_cache()</span>
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">integerBreak</span><span class="hljs-params">(self, n: int)</span> -> int:</span>
<span class="hljs-keyword">if</span> n == <span class="hljs-params">2</span>: <span class="hljs-keyword">return</span> <span class="hljs-params">1</span>
res = <span class="hljs-params">0</span>
<span class="hljs-keyword">for</span> i <span class="hljs-keyword">in</span> range(<span class="hljs-params">1</span>, n):
res = max(res, max(i * self.integerBreak(n - i),i * (n - i)))
<span class="hljs-keyword">return</span> res
```
```
为了简单起见(偷懒起见),我直接用了 lru\_cache 注解, 上面的代码是可以 AC 的。
## 动态规划
看到这里的同学应该发现了,这个套路是不是很熟悉?下一步就是将其改造成动态规划了。
如图 4,我们的思考方式是从顶向下,这符合人们思考问题的方式。将其改造成如下图的自底向上方式就是动态规划。
![](https://img.kancloud.cn/99/e6/99e6a44d0aade0bd88b5e008a008c727_1586x844.jpg)(图 5)
现在再来看下文章开头的代码:
```
<pre class="calibre18">```
<span class="hljs-class"><span class="hljs-keyword">class</span> <span class="hljs-title">Solution</span>:</span>
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">integerBreak</span><span class="hljs-params">(self, n: int)</span> -> int:</span>
dp = [<span class="hljs-params">1</span>] * (n + <span class="hljs-params">1</span>)
<span class="hljs-keyword">for</span> i <span class="hljs-keyword">in</span> range(<span class="hljs-params">3</span>, n + <span class="hljs-params">1</span>):
<span class="hljs-keyword">for</span> j <span class="hljs-keyword">in</span> range(<span class="hljs-params">1</span>, i):
dp[i] = max(j * dp[i - j], j * (i - j), dp[i])
<span class="hljs-keyword">return</span> dp[n]
```
```
dp table 存储的是图 3 中 f(n)的值。一个自然的想法是令 dp\[i\] 等价于 f(i)。而由于上面分析了原问题等价于 f(n),那么很自然的原问题也等价于 dp\[n\]。
而 dp\[i\]等价于 f(i),那么上面针对 f(i) 写的递归公式对 dp\[i\] 也是适用的,我们拿来试试。
```
<pre class="calibre18">```
// 关键语句
res = max(res, max(i * self.integerBreak(n - i),i * (n - i)))
```
```
翻译过来就是:
```
<pre class="calibre18">```
dp[i] = max(dp[i], max(i * dp(n - i),i * (n - i)))
```
```
而这里的 n 是什么呢?我们说了`dp是自底向下的思考方式`,那么在达到 n 之前是看不到整体的`n` 的。因此这里的 n 实际上是 1,2,3,4... n。
自然地,我们用一层循环来生成上面一系列的 n 值。接着我们还要生成一系列的 i 值,注意到 n - i 是要大于 0 的,因此 i 只需要循环到 n - 1 即可。
思考到这里,我相信上面的代码真的是`不难得出`了。
## 关键点
- 数学抽象
- 递归分析
- 记忆化递归
- 动态规划
## 代码
```
<pre class="calibre18">```
<span class="hljs-class"><span class="hljs-keyword">class</span> <span class="hljs-title">Solution</span>:</span>
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">integerBreak</span><span class="hljs-params">(self, n: int)</span> -> int:</span>
dp = [<span class="hljs-params">1</span>] * (n + <span class="hljs-params">1</span>)
<span class="hljs-keyword">for</span> i <span class="hljs-keyword">in</span> range(<span class="hljs-params">3</span>, n + <span class="hljs-params">1</span>):
<span class="hljs-keyword">for</span> j <span class="hljs-keyword">in</span> range(<span class="hljs-params">1</span>, i):
dp[i] = max(j * dp[i - j], j * (i - j), dp[i])
<span class="hljs-keyword">return</span> dp[n]
```
```
## 总结
培养自己的解题思维很重要, 不要直接看别人的答案。而是要将别人的东西变成自己的, 而要做到这一点,你就要知道“他们是怎么想到的”,“想到这点是不是有什么前置知识”,“类似题目有哪些”。
最优解通常不是一下子就想到了,这需要你在不那么优的解上摔了很多次跟头之后才能记住的。因此在你没有掌握之前,不要直接去看最优解。 在你掌握了之后,我不仅鼓励你去写最优解,还鼓励去一题多解,从多个解决思考问题。 到了那个时候, 萌新也会惊讶地呼喊“哇塞, 这题还可以这么解啊?”。 你也会低调地发出“害,解题就是这么简单平凡且枯燥。”的声音。
## 扩展
正如我开头所说,这种套路实在是太常见了。希望大家能够识别这种问题的本质,彻底掌握这种套路。另外我对这个套路也在我的新书《LeetCode 题解》中做了介绍,本书目前刚完成草稿的编写,如果你想要第一时间获取到我们的题解新书,那么请发送邮件到 `azl397985856@gmail.com`,标题著明“书籍《LeetCode 题解》预定”字样。。
- Introduction
- 第一章 - 算法专题
- 数据结构
- 基础算法
- 二叉树的遍历
- 动态规划
- 哈夫曼编码和游程编码
- 布隆过滤器
- 字符串问题
- 前缀树专题
- 《贪婪策略》专题
- 《深度优先遍历》专题
- 滑动窗口(思路 + 模板)
- 位运算
- 设计题
- 小岛问题
- 最大公约数
- 并查集
- 前缀和
- 平衡二叉树专题
- 第二章 - 91 天学算法
- 第一期讲义-二分法
- 第一期讲义-双指针
- 第二期
- 第三章 - 精选题解
- 《日程安排》专题
- 《构造二叉树》专题
- 字典序列删除
- 百度的算法面试题 * 祖玛游戏
- 西法的刷题秘籍】一次搞定前缀和
- 字节跳动的算法面试题是什么难度?
- 字节跳动的算法面试题是什么难度?(第二弹)
- 《我是你的妈妈呀》 * 第一期
- 一文带你看懂二叉树的序列化
- 穿上衣服我就不认识你了?来聊聊最长上升子序列
- 你的衣服我扒了 * 《最长公共子序列》
- 一文看懂《最大子序列和问题》
- 第四章 - 高频考题(简单)
- 面试题 17.12. BiNode
- 0001. 两数之和
- 0020. 有效的括号
- 0021. 合并两个有序链表
- 0026. 删除排序数组中的重复项
- 0053. 最大子序和
- 0088. 合并两个有序数组
- 0101. 对称二叉树
- 0104. 二叉树的最大深度
- 0108. 将有序数组转换为二叉搜索树
- 0121. 买卖股票的最佳时机
- 0122. 买卖股票的最佳时机 II
- 0125. 验证回文串
- 0136. 只出现一次的数字
- 0155. 最小栈
- 0167. 两数之和 II * 输入有序数组
- 0169. 多数元素
- 0172. 阶乘后的零
- 0190. 颠倒二进制位
- 0191. 位1的个数
- 0198. 打家劫舍
- 0203. 移除链表元素
- 0206. 反转链表
- 0219. 存在重复元素 II
- 0226. 翻转二叉树
- 0232. 用栈实现队列
- 0263. 丑数
- 0283. 移动零
- 0342. 4的幂
- 0349. 两个数组的交集
- 0371. 两整数之和
- 0437. 路径总和 III
- 0455. 分发饼干
- 0575. 分糖果
- 0874. 模拟行走机器人
- 1260. 二维网格迁移
- 1332. 删除回文子序列
- 第五章 - 高频考题(中等)
- 0002. 两数相加
- 0003. 无重复字符的最长子串
- 0005. 最长回文子串
- 0011. 盛最多水的容器
- 0015. 三数之和
- 0017. 电话号码的字母组合
- 0019. 删除链表的倒数第N个节点
- 0022. 括号生成
- 0024. 两两交换链表中的节点
- 0029. 两数相除
- 0031. 下一个排列
- 0033. 搜索旋转排序数组
- 0039. 组合总和
- 0040. 组合总和 II
- 0046. 全排列
- 0047. 全排列 II
- 0048. 旋转图像
- 0049. 字母异位词分组
- 0050. Pow(x, n)
- 0055. 跳跃游戏
- 0056. 合并区间
- 0060. 第k个排列
- 0062. 不同路径
- 0073. 矩阵置零
- 0075. 颜色分类
- 0078. 子集
- 0079. 单词搜索
- 0080. 删除排序数组中的重复项 II
- 0086. 分隔链表
- 0090. 子集 II
- 0091. 解码方法
- 0092. 反转链表 II
- 0094. 二叉树的中序遍历
- 0095. 不同的二叉搜索树 II
- 0096. 不同的二叉搜索树
- 0098. 验证二叉搜索树
- 0102. 二叉树的层序遍历
- 0103. 二叉树的锯齿形层次遍历
- 105. 从前序与中序遍历序列构造二叉树
- 0113. 路径总和 II
- 0129. 求根到叶子节点数字之和
- 0130. 被围绕的区域
- 0131. 分割回文串
- 0139. 单词拆分
- 0144. 二叉树的前序遍历
- 0150. 逆波兰表达式求值
- 0152. 乘积最大子数组
- 0199. 二叉树的右视图
- 0200. 岛屿数量
- 0201. 数字范围按位与
- 0208. 实现 Trie (前缀树)
- 0209. 长度最小的子数组
- 0211. 添加与搜索单词 * 数据结构设计
- 0215. 数组中的第K个最大元素
- 0221. 最大正方形
- 0229. 求众数 II
- 0230. 二叉搜索树中第K小的元素
- 0236. 二叉树的最近公共祖先
- 0238. 除自身以外数组的乘积
- 0240. 搜索二维矩阵 II
- 0279. 完全平方数
- 0309. 最佳买卖股票时机含冷冻期
- 0322. 零钱兑换
- 0328. 奇偶链表
- 0334. 递增的三元子序列
- 0337. 打家劫舍 III
- 0343. 整数拆分
- 0365. 水壶问题
- 0378. 有序矩阵中第K小的元素
- 0380. 常数时间插入、删除和获取随机元素
- 0416. 分割等和子集
- 0445. 两数相加 II
- 0454. 四数相加 II
- 0494. 目标和
- 0516. 最长回文子序列
- 0518. 零钱兑换 II
- 0547. 朋友圈
- 0560. 和为K的子数组
- 0609. 在系统中查找重复文件
- 0611. 有效三角形的个数
- 0718. 最长重复子数组
- 0754. 到达终点数字
- 0785. 判断二分图
- 0820. 单词的压缩编码
- 0875. 爱吃香蕉的珂珂
- 0877. 石子游戏
- 0886. 可能的二分法
- 0900. RLE 迭代器
- 0912. 排序数组
- 0935. 骑士拨号器
- 1011. 在 D 天内送达包裹的能力
- 1014. 最佳观光组合
- 1015. 可被 K 整除的最小整数
- 1019. 链表中的下一个更大节点
- 1020. 飞地的数量
- 1023. 驼峰式匹配
- 1031. 两个非重叠子数组的最大和
- 1104. 二叉树寻路
- 1131.绝对值表达式的最大值
- 1186. 删除一次得到子数组最大和
- 1218. 最长定差子序列
- 1227. 飞机座位分配概率
- 1261. 在受污染的二叉树中查找元素
- 1262. 可被三整除的最大和
- 1297. 子串的最大出现次数
- 1310. 子数组异或查询
- 1334. 阈值距离内邻居最少的城市
- 1371.每个元音包含偶数次的最长子字符串
- 第六章 - 高频考题(困难)
- 0004. 寻找两个正序数组的中位数
- 0023. 合并K个升序链表
- 0025. K 个一组翻转链表
- 0030. 串联所有单词的子串
- 0032. 最长有效括号
- 0042. 接雨水
- 0052. N皇后 II
- 0084. 柱状图中最大的矩形
- 0085. 最大矩形
- 0124. 二叉树中的最大路径和
- 0128. 最长连续序列
- 0145. 二叉树的后序遍历
- 0212. 单词搜索 II
- 0239. 滑动窗口最大值
- 0295. 数据流的中位数
- 0301. 删除无效的括号
- 0312. 戳气球
- 0335. 路径交叉
- 0460. LFU缓存
- 0472. 连接词
- 0488. 祖玛游戏
- 0493. 翻转对
- 0887. 鸡蛋掉落
- 0895. 最大频率栈
- 1032. 字符流
- 1168. 水资源分配优化
- 1449. 数位成本和为目标值的最大数字
- 后序