# 0239. 滑动窗口最大值
## 题目地址(239. 滑动窗口最大值)
<https://leetcode-cn.com/problems/sliding-window-maximum/>
## 题目描述
```
<pre class="calibre18">```
给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。
返回滑动窗口中的最大值。
进阶:
你能在线性时间复杂度内解决此题吗?
示例:
输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3
输出: [3,3,5,5,6,7]
解释:
滑动窗口的位置 最大值
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
提示:
1 <= nums.length <= 10^5
-10^4 <= nums[i] <= 10^4
1 <= k <= nums.length
```
```
## 前置知识
- 队列
- 滑动窗口
## 公司
- 阿里
- 腾讯
- 百度
- 字节
## 思路
符合直觉的想法是直接遍历 nums, 然后然后用一个变量 slideWindow 去承载 k 个元素, 然后对 slideWindow 求最大值,这是可以的,时间复杂度是 O(n \* k).代码如下:
JavaScript:
```
<pre class="calibre18">```
<span class="hljs-keyword">var</span> maxSlidingWindow = <span class="hljs-function"><span class="hljs-keyword">function</span>(<span class="hljs-params">nums, k</span>) </span>{
<span class="hljs-title">// bad 时间复杂度O(n * k)</span>
<span class="hljs-keyword">if</span> (nums.length === <span class="hljs-params">0</span> || k === <span class="hljs-params">0</span>) <span class="hljs-keyword">return</span> [];
<span class="hljs-keyword">let</span> slideWindow = [];
<span class="hljs-keyword">const</span> ret = [];
<span class="hljs-keyword">for</span> (<span class="hljs-keyword">let</span> i = <span class="hljs-params">0</span>; i < nums.length - k + <span class="hljs-params">1</span>; i++) {
<span class="hljs-keyword">for</span> (<span class="hljs-keyword">let</span> j = <span class="hljs-params">0</span>; j < k; j++) {
slideWindow.push(nums[i + j]);
}
ret.push(<span class="hljs-params">Math</span>.max(...slideWindow));
slideWindow = [];
}
<span class="hljs-keyword">return</span> ret;
};
```
```
Python3:
```
<pre class="calibre18">```
<span class="hljs-class"><span class="hljs-keyword">class</span> <span class="hljs-title">Solution</span>:</span>
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">maxSlidingWindow</span><span class="hljs-params">(self, nums: List[int], k: int)</span> -> List[int]:</span>
<span class="hljs-keyword">if</span> k == <span class="hljs-params">0</span>: <span class="hljs-keyword">return</span> []
res = []
<span class="hljs-keyword">for</span> r <span class="hljs-keyword">in</span> range(k - <span class="hljs-params">1</span>, len(nums)):
res.append(max(nums[r - k + <span class="hljs-params">1</span>:r + <span class="hljs-params">1</span>]))
<span class="hljs-keyword">return</span> res
```
```
但是如果真的是这样,这道题也不会是 hard 吧?这道题有一个 follow up,要求你用线性的时间去完成。 我们可以用双端队列来完成,思路是用一个双端队列来保存`接下来的滑动窗口可能成为最大值的数`。具体做法:
- 入队列
- 移除失效元素,失效元素有两种
- 一种是已经超出窗口范围了,比如我遍历到第4个元素,k = 3,那么i = 0的元素就不应该出现在双端队列中了 具体就是`索引大于 i - k + 1的元素都应该被清除`
- 小于当前元素都没有利用价值了,具体就是`从后往前遍历(双端队列是一个递减队列)双端队列,如果小于当前元素就出队列`
如果你仔细观察的话,发现双端队列其实是一个递减的一个队列。因此队首的元素一定是最大的。用图来表示就是:
![](https://img.kancloud.cn/a7/96/a796fa22048df6449a98d94235ba689e_623x486.jpg)
## 关键点解析
- 双端队列简化时间复杂度
- 滑动窗口
## 代码
JavaScript:
```
<pre class="calibre18">```
<span class="hljs-keyword">var</span> maxSlidingWindow = <span class="hljs-function"><span class="hljs-keyword">function</span>(<span class="hljs-params">nums, k</span>) </span>{
<span class="hljs-title">// 双端队列优化时间复杂度, 时间复杂度O(n)</span>
<span class="hljs-keyword">const</span> deque = []; <span class="hljs-title">// 存放在接下来的滑动窗口可能成为最大值的数</span>
<span class="hljs-keyword">const</span> ret = [];
<span class="hljs-keyword">for</span> (<span class="hljs-keyword">let</span> i = <span class="hljs-params">0</span>; i < nums.length; i++) {
<span class="hljs-title">// 清空失效元素</span>
<span class="hljs-keyword">while</span> (deque[<span class="hljs-params">0</span>] < i - k + <span class="hljs-params">1</span>) {
deque.shift();
}
<span class="hljs-keyword">while</span> (nums[deque[deque.length - <span class="hljs-params">1</span>]] < nums[i]) {
deque.pop();
}
deque.push(i);
<span class="hljs-keyword">if</span> (i >= k - <span class="hljs-params">1</span>) {
ret.push(nums[deque[<span class="hljs-params">0</span>]]);
}
}
<span class="hljs-keyword">return</span> ret;
};
```
```
Python3:
```
<pre class="calibre18">```
<span class="hljs-class"><span class="hljs-keyword">class</span> <span class="hljs-title">Solution</span>:</span>
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">maxSlidingWindow</span><span class="hljs-params">(self, nums: List[int], k: int)</span> -> List[int]:</span>
deque, res, n = [], [], len(nums)
<span class="hljs-keyword">for</span> i <span class="hljs-keyword">in</span> range(n):
<span class="hljs-keyword">while</span> deque <span class="hljs-keyword">and</span> deque[<span class="hljs-params">0</span>] < i - k + <span class="hljs-params">1</span>:
deque.pop(<span class="hljs-params">0</span>)
<span class="hljs-keyword">while</span> deque <span class="hljs-keyword">and</span> nums[i] > nums[deque[<span class="hljs-params">-1</span>]]:
deque.pop(<span class="hljs-params">-1</span>)
deque.append(i)
<span class="hljs-keyword">if</span> i >= k - <span class="hljs-params">1</span>: res.append(nums[deque[<span class="hljs-params">0</span>]])
<span class="hljs-keyword">return</span> res
```
```
**复杂度分析**
- 时间复杂度:O(N)O(N)O(N)
- 空间复杂度:O(N)O(N)O(N)
## 扩展
### 为什么用双端队列
因为删除无效元素的时候,会清除队首的元素(索引太小了)或者队尾(元素太小了)的元素。 因此需要同时对队首和队尾进行操作,使用双端队列是一种合乎情理的做法。
大家对此有何看法,欢迎给我留言,我有时间都会一一查看回答。更多算法套路可以访问我的 LeetCode 题解仓库:<https://github.com/azl397985856/leetcode> 。 目前已经 37K star 啦。 大家也可以关注我的公众号《力扣加加》带你啃下算法这块硬骨头。 ![](https://img.kancloud.cn/cf/0f/cf0fc0dd21e94b443dd8bca6cc15b34b_900x500.jpg)
- Introduction
- 第一章 - 算法专题
- 数据结构
- 基础算法
- 二叉树的遍历
- 动态规划
- 哈夫曼编码和游程编码
- 布隆过滤器
- 字符串问题
- 前缀树专题
- 《贪婪策略》专题
- 《深度优先遍历》专题
- 滑动窗口(思路 + 模板)
- 位运算
- 设计题
- 小岛问题
- 最大公约数
- 并查集
- 前缀和
- 平衡二叉树专题
- 第二章 - 91 天学算法
- 第一期讲义-二分法
- 第一期讲义-双指针
- 第二期
- 第三章 - 精选题解
- 《日程安排》专题
- 《构造二叉树》专题
- 字典序列删除
- 百度的算法面试题 * 祖玛游戏
- 西法的刷题秘籍】一次搞定前缀和
- 字节跳动的算法面试题是什么难度?
- 字节跳动的算法面试题是什么难度?(第二弹)
- 《我是你的妈妈呀》 * 第一期
- 一文带你看懂二叉树的序列化
- 穿上衣服我就不认识你了?来聊聊最长上升子序列
- 你的衣服我扒了 * 《最长公共子序列》
- 一文看懂《最大子序列和问题》
- 第四章 - 高频考题(简单)
- 面试题 17.12. BiNode
- 0001. 两数之和
- 0020. 有效的括号
- 0021. 合并两个有序链表
- 0026. 删除排序数组中的重复项
- 0053. 最大子序和
- 0088. 合并两个有序数组
- 0101. 对称二叉树
- 0104. 二叉树的最大深度
- 0108. 将有序数组转换为二叉搜索树
- 0121. 买卖股票的最佳时机
- 0122. 买卖股票的最佳时机 II
- 0125. 验证回文串
- 0136. 只出现一次的数字
- 0155. 最小栈
- 0167. 两数之和 II * 输入有序数组
- 0169. 多数元素
- 0172. 阶乘后的零
- 0190. 颠倒二进制位
- 0191. 位1的个数
- 0198. 打家劫舍
- 0203. 移除链表元素
- 0206. 反转链表
- 0219. 存在重复元素 II
- 0226. 翻转二叉树
- 0232. 用栈实现队列
- 0263. 丑数
- 0283. 移动零
- 0342. 4的幂
- 0349. 两个数组的交集
- 0371. 两整数之和
- 0437. 路径总和 III
- 0455. 分发饼干
- 0575. 分糖果
- 0874. 模拟行走机器人
- 1260. 二维网格迁移
- 1332. 删除回文子序列
- 第五章 - 高频考题(中等)
- 0002. 两数相加
- 0003. 无重复字符的最长子串
- 0005. 最长回文子串
- 0011. 盛最多水的容器
- 0015. 三数之和
- 0017. 电话号码的字母组合
- 0019. 删除链表的倒数第N个节点
- 0022. 括号生成
- 0024. 两两交换链表中的节点
- 0029. 两数相除
- 0031. 下一个排列
- 0033. 搜索旋转排序数组
- 0039. 组合总和
- 0040. 组合总和 II
- 0046. 全排列
- 0047. 全排列 II
- 0048. 旋转图像
- 0049. 字母异位词分组
- 0050. Pow(x, n)
- 0055. 跳跃游戏
- 0056. 合并区间
- 0060. 第k个排列
- 0062. 不同路径
- 0073. 矩阵置零
- 0075. 颜色分类
- 0078. 子集
- 0079. 单词搜索
- 0080. 删除排序数组中的重复项 II
- 0086. 分隔链表
- 0090. 子集 II
- 0091. 解码方法
- 0092. 反转链表 II
- 0094. 二叉树的中序遍历
- 0095. 不同的二叉搜索树 II
- 0096. 不同的二叉搜索树
- 0098. 验证二叉搜索树
- 0102. 二叉树的层序遍历
- 0103. 二叉树的锯齿形层次遍历
- 105. 从前序与中序遍历序列构造二叉树
- 0113. 路径总和 II
- 0129. 求根到叶子节点数字之和
- 0130. 被围绕的区域
- 0131. 分割回文串
- 0139. 单词拆分
- 0144. 二叉树的前序遍历
- 0150. 逆波兰表达式求值
- 0152. 乘积最大子数组
- 0199. 二叉树的右视图
- 0200. 岛屿数量
- 0201. 数字范围按位与
- 0208. 实现 Trie (前缀树)
- 0209. 长度最小的子数组
- 0211. 添加与搜索单词 * 数据结构设计
- 0215. 数组中的第K个最大元素
- 0221. 最大正方形
- 0229. 求众数 II
- 0230. 二叉搜索树中第K小的元素
- 0236. 二叉树的最近公共祖先
- 0238. 除自身以外数组的乘积
- 0240. 搜索二维矩阵 II
- 0279. 完全平方数
- 0309. 最佳买卖股票时机含冷冻期
- 0322. 零钱兑换
- 0328. 奇偶链表
- 0334. 递增的三元子序列
- 0337. 打家劫舍 III
- 0343. 整数拆分
- 0365. 水壶问题
- 0378. 有序矩阵中第K小的元素
- 0380. 常数时间插入、删除和获取随机元素
- 0416. 分割等和子集
- 0445. 两数相加 II
- 0454. 四数相加 II
- 0494. 目标和
- 0516. 最长回文子序列
- 0518. 零钱兑换 II
- 0547. 朋友圈
- 0560. 和为K的子数组
- 0609. 在系统中查找重复文件
- 0611. 有效三角形的个数
- 0718. 最长重复子数组
- 0754. 到达终点数字
- 0785. 判断二分图
- 0820. 单词的压缩编码
- 0875. 爱吃香蕉的珂珂
- 0877. 石子游戏
- 0886. 可能的二分法
- 0900. RLE 迭代器
- 0912. 排序数组
- 0935. 骑士拨号器
- 1011. 在 D 天内送达包裹的能力
- 1014. 最佳观光组合
- 1015. 可被 K 整除的最小整数
- 1019. 链表中的下一个更大节点
- 1020. 飞地的数量
- 1023. 驼峰式匹配
- 1031. 两个非重叠子数组的最大和
- 1104. 二叉树寻路
- 1131.绝对值表达式的最大值
- 1186. 删除一次得到子数组最大和
- 1218. 最长定差子序列
- 1227. 飞机座位分配概率
- 1261. 在受污染的二叉树中查找元素
- 1262. 可被三整除的最大和
- 1297. 子串的最大出现次数
- 1310. 子数组异或查询
- 1334. 阈值距离内邻居最少的城市
- 1371.每个元音包含偶数次的最长子字符串
- 第六章 - 高频考题(困难)
- 0004. 寻找两个正序数组的中位数
- 0023. 合并K个升序链表
- 0025. K 个一组翻转链表
- 0030. 串联所有单词的子串
- 0032. 最长有效括号
- 0042. 接雨水
- 0052. N皇后 II
- 0084. 柱状图中最大的矩形
- 0085. 最大矩形
- 0124. 二叉树中的最大路径和
- 0128. 最长连续序列
- 0145. 二叉树的后序遍历
- 0212. 单词搜索 II
- 0239. 滑动窗口最大值
- 0295. 数据流的中位数
- 0301. 删除无效的括号
- 0312. 戳气球
- 0335. 路径交叉
- 0460. LFU缓存
- 0472. 连接词
- 0488. 祖玛游戏
- 0493. 翻转对
- 0887. 鸡蛋掉落
- 0895. 最大频率栈
- 1032. 字符流
- 1168. 水资源分配优化
- 1449. 数位成本和为目标值的最大数字
- 后序