# 0050. Pow(x, n)
## 题目地址(50. Pow(x, n))
<https://leetcode-cn.com/problems/powx-n/description/>
## 题目描述
```
<pre class="calibre18">```
实现 pow(x, n) ,即计算 x 的 n 次幂函数。
示例 1:
输入: 2.00000, 10
输出: 1024.00000
示例 2:
输入: 2.10000, 3
输出: 9.26100
示例 3:
输入: 2.00000, -2
输出: 0.25000
解释: 2-2 = 1/22 = 1/4 = 0.25
说明:
-100.0 < x < 100.0
n 是 32 位有符号整数,其数值范围是 [−231, 231 − 1] 。
```
```
## 前置知识
- 递归
- 位运算
## 解法零 - 遍历法
## 公司
- 阿里
- 腾讯
- 百度
- 字节
### 思路
这道题是让我们实现数学函数`幂`,因此直接调用系统内置函数是不被允许的。
符合直觉的做法是`将x乘以n次`,这种做法的时间复杂度是O(N)O(N)O(N)。
经实际测试,这种做法果然超时了。测试用例通过 291/304,在 `0.00001\n2147483647`这个测试用例挂掉了。如果是面试,这个解法可以作为一种兜底解法。
### 代码
语言支持: Python3
Python3 Code:
```
<pre class="calibre18">```
<span class="hljs-class"><span class="hljs-keyword">class</span> <span class="hljs-title">Solution</span>:</span>
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">myPow</span><span class="hljs-params">(self, x: float, n: int)</span> -> float:</span>
<span class="hljs-keyword">if</span> n == <span class="hljs-params">0</span>:
<span class="hljs-keyword">return</span> <span class="hljs-params">1</span>
<span class="hljs-keyword">if</span> n < <span class="hljs-params">0</span>:
<span class="hljs-keyword">return</span> <span class="hljs-params">1</span> / self.myPow(x, -n)
res = <span class="hljs-params">1</span>
<span class="hljs-keyword">for</span> _ <span class="hljs-keyword">in</span> range(n):
res *= x
<span class="hljs-keyword">return</span> res
```
```
## 解法一 - 普通递归(超时法)
### 思路
首先我们要知道:
- 如果想要求 x ^ 4,那么我们可以求 (x^2)^2
- 如果是奇数,会有一点不同。 比如 x ^ 5 就等价于 x \* (x^2)^2。
> 当然 x ^ 5 可以等价于 (x ^ 2) ^ 2.5, 但是这不相当于直接调用了幂函数了么。对于整数,我们可以很方便的模拟,但是小数就不方便了。
我们的思路就是:
- 将 n 地板除 2,我们不妨设结果为 a
- 那么 myPow(x, n) 就等价于 `myPow(x, a) * myPow(x, n - a)`
很可惜这种算法也会超时,原因在于重复计算会比较多,你可以试一下缓存一下计算看能不能通过。
> 如果你搞不清楚有哪些重复计算,建议画图理解一下。
### 代码
语言支持: Python3
Python3 Code:
```
<pre class="calibre18">```
<span class="hljs-class"><span class="hljs-keyword">class</span> <span class="hljs-title">Solution</span>:</span>
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">myPow</span><span class="hljs-params">(self, x: float, n: int)</span> -> float:</span>
<span class="hljs-keyword">if</span> n == <span class="hljs-params">0</span>:
<span class="hljs-keyword">return</span> <span class="hljs-params">1</span>
<span class="hljs-keyword">if</span> n == <span class="hljs-params">1</span>:
<span class="hljs-keyword">return</span> x
<span class="hljs-keyword">if</span> n < <span class="hljs-params">0</span>:
<span class="hljs-keyword">return</span> <span class="hljs-params">1</span> / self.myPow(x, -n)
<span class="hljs-keyword">return</span> self.myPow(x, n // <span class="hljs-params">2</span>) * self.myPow(x, n - n // <span class="hljs-params">2</span>)
```
```
## 解法二 - 优化递归
### 思路
上面的解法每次直接 myPow 都会调用两次自己。我们不从缓存计算角度,而是从减少这种调用的角度来优化。
我们考虑 myPow 只调用一次自身可以么? 没错,是可以的。
我们的思路就是:
- 如果 n 是偶数,我们将 n 折半,底数变为 x^2
- 如果 n 是奇数, 我们将 n 减去 1 ,底数不变,得到的结果再乘上底数 x
这样终于可以 AC。
### 代码
语言支持: Python3
Python3 Code:
```
<pre class="calibre18">```
<span class="hljs-class"><span class="hljs-keyword">class</span> <span class="hljs-title">Solution</span>:</span>
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">myPow</span><span class="hljs-params">(self, x: float, n: int)</span> -> float:</span>
<span class="hljs-keyword">if</span> n == <span class="hljs-params">0</span>:
<span class="hljs-keyword">return</span> <span class="hljs-params">1</span>
<span class="hljs-keyword">if</span> n == <span class="hljs-params">1</span>:
<span class="hljs-keyword">return</span> x
<span class="hljs-keyword">if</span> n < <span class="hljs-params">0</span>:
<span class="hljs-keyword">return</span> <span class="hljs-params">1</span> / self.myPow(x, -n)
<span class="hljs-keyword">return</span> self.myPow(x _ x, n // <span class="hljs-params">2</span>) <span class="hljs-keyword">if</span> n % <span class="hljs-params">2</span> == <span class="hljs-params">0</span> <span class="hljs-keyword">else</span> x _ self.myPow(x, n - <span class="hljs-params">1</span>)
```
```
## 解法三 - 位运算
### 思路
我们来从位(bit)的角度来看一下这道题。如果你经常看我的题解和文章的话,可能知道我之前写过几次相关的“从位的角度思考分治法”,比如 LeetCode [458.可怜的小猪](https://leetcode-cn.com/problems/poor-pigs/description/)。
以 x 的 10 次方举例。10 的 2 进制是 1010,然后用 2 进制转 10 进制的方法把它展成 2 的幂次的和。
![](https://img.kancloud.cn/c1/39/c139eec856e0a3a4e5c4890683a9006d_1052x94.jpg)
![](https://img.kancloud.cn/fb/58/fb582b5981aa3ade14333560cb4a9eb2_1213x1080.jpg)
因此我们的算法就是:
- 不断的求解 x 的 2^0 次方,x 的 2^1 次方,x 的 2^2 次方等等。
- 将 n 转化为二进制表示
- 将 n 的二进制表示中`1的位置`pick 出来。比如 n 的第 i 位为 1,那么就将 x^i pick 出来。
- 将 pick 出来的结果相乘
![](https://img.kancloud.cn/af/75/af757f4a64b803f69f7b4f3e686a3336_1142x624.jpg)
这里有两个问题:
第一个问题是`似乎我们需要存储 x^i 以便后续相乘的时候用到`。实际上,我们并不需要这么做。我们可以采取一次遍历的方式来完成,具体看代码。
第二个问题是,如果我们从低位到高位计算的时候,我们如何判断最高位置是否为 1?我们需要一个 bitmask 来完成,这种算法我们甚至需要借助一个额外的变量。 然而我们可以 hack 一下,直接从高位到低位进行计算,这个时候我们只需要判断最后一位是否为 1 就可以了,这个就简单了,我们直接和 1 进行一次`与运算`即可。
### 代码
语言支持: Python3
Python3 Code:
```
<pre class="calibre18">```
<span class="hljs-class"><span class="hljs-keyword">class</span> <span class="hljs-title">Solution</span>:</span>
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">myPow</span><span class="hljs-params">(self, x: float, n: int)</span> -> float:</span>
<span class="hljs-keyword">if</span> n < <span class="hljs-params">0</span>:
<span class="hljs-keyword">return</span> <span class="hljs-params">1</span> / self.myPow(x, -n)
res = <span class="hljs-params">1</span>
<span class="hljs-keyword">while</span> n:
<span class="hljs-keyword">if</span> n & <span class="hljs-params">1</span> == <span class="hljs-params">1</span>:
res *= x
x *= x
n >>= <span class="hljs-params">1</span>
<span class="hljs-keyword">return</span> res
```
```
**复杂度分析**
- 时间复杂度:O(logN)O(logN)O(logN)
- 空间复杂度:O(1)O(1)O(1)
## 关键点解析
- 超时分析
- hashtable
- 数学分析
- 位运算
- 二进制转十进制
## 相关题目
- [458.可怜的小猪](https://leetcode-cn.com/problems/poor-pigs/description/)
![](https://img.kancloud.cn/a0/98/a0988ff4ab268f1671594fe3a075dee0_1175x1080.jpg)
大家对此有何看法,欢迎给我留言,我有时间都会一一查看回答。更多算法套路可以访问我的 LeetCode 题解仓库:<https://github.com/azl397985856/leetcode> 。 目前已经 37K star 啦。 大家也可以关注我的公众号《力扣加加》带你啃下算法这块硬骨头。 ![](https://img.kancloud.cn/cf/0f/cf0fc0dd21e94b443dd8bca6cc15b34b_900x500.jpg)
- Introduction
- 第一章 - 算法专题
- 数据结构
- 基础算法
- 二叉树的遍历
- 动态规划
- 哈夫曼编码和游程编码
- 布隆过滤器
- 字符串问题
- 前缀树专题
- 《贪婪策略》专题
- 《深度优先遍历》专题
- 滑动窗口(思路 + 模板)
- 位运算
- 设计题
- 小岛问题
- 最大公约数
- 并查集
- 前缀和
- 平衡二叉树专题
- 第二章 - 91 天学算法
- 第一期讲义-二分法
- 第一期讲义-双指针
- 第二期
- 第三章 - 精选题解
- 《日程安排》专题
- 《构造二叉树》专题
- 字典序列删除
- 百度的算法面试题 * 祖玛游戏
- 西法的刷题秘籍】一次搞定前缀和
- 字节跳动的算法面试题是什么难度?
- 字节跳动的算法面试题是什么难度?(第二弹)
- 《我是你的妈妈呀》 * 第一期
- 一文带你看懂二叉树的序列化
- 穿上衣服我就不认识你了?来聊聊最长上升子序列
- 你的衣服我扒了 * 《最长公共子序列》
- 一文看懂《最大子序列和问题》
- 第四章 - 高频考题(简单)
- 面试题 17.12. BiNode
- 0001. 两数之和
- 0020. 有效的括号
- 0021. 合并两个有序链表
- 0026. 删除排序数组中的重复项
- 0053. 最大子序和
- 0088. 合并两个有序数组
- 0101. 对称二叉树
- 0104. 二叉树的最大深度
- 0108. 将有序数组转换为二叉搜索树
- 0121. 买卖股票的最佳时机
- 0122. 买卖股票的最佳时机 II
- 0125. 验证回文串
- 0136. 只出现一次的数字
- 0155. 最小栈
- 0167. 两数之和 II * 输入有序数组
- 0169. 多数元素
- 0172. 阶乘后的零
- 0190. 颠倒二进制位
- 0191. 位1的个数
- 0198. 打家劫舍
- 0203. 移除链表元素
- 0206. 反转链表
- 0219. 存在重复元素 II
- 0226. 翻转二叉树
- 0232. 用栈实现队列
- 0263. 丑数
- 0283. 移动零
- 0342. 4的幂
- 0349. 两个数组的交集
- 0371. 两整数之和
- 0437. 路径总和 III
- 0455. 分发饼干
- 0575. 分糖果
- 0874. 模拟行走机器人
- 1260. 二维网格迁移
- 1332. 删除回文子序列
- 第五章 - 高频考题(中等)
- 0002. 两数相加
- 0003. 无重复字符的最长子串
- 0005. 最长回文子串
- 0011. 盛最多水的容器
- 0015. 三数之和
- 0017. 电话号码的字母组合
- 0019. 删除链表的倒数第N个节点
- 0022. 括号生成
- 0024. 两两交换链表中的节点
- 0029. 两数相除
- 0031. 下一个排列
- 0033. 搜索旋转排序数组
- 0039. 组合总和
- 0040. 组合总和 II
- 0046. 全排列
- 0047. 全排列 II
- 0048. 旋转图像
- 0049. 字母异位词分组
- 0050. Pow(x, n)
- 0055. 跳跃游戏
- 0056. 合并区间
- 0060. 第k个排列
- 0062. 不同路径
- 0073. 矩阵置零
- 0075. 颜色分类
- 0078. 子集
- 0079. 单词搜索
- 0080. 删除排序数组中的重复项 II
- 0086. 分隔链表
- 0090. 子集 II
- 0091. 解码方法
- 0092. 反转链表 II
- 0094. 二叉树的中序遍历
- 0095. 不同的二叉搜索树 II
- 0096. 不同的二叉搜索树
- 0098. 验证二叉搜索树
- 0102. 二叉树的层序遍历
- 0103. 二叉树的锯齿形层次遍历
- 105. 从前序与中序遍历序列构造二叉树
- 0113. 路径总和 II
- 0129. 求根到叶子节点数字之和
- 0130. 被围绕的区域
- 0131. 分割回文串
- 0139. 单词拆分
- 0144. 二叉树的前序遍历
- 0150. 逆波兰表达式求值
- 0152. 乘积最大子数组
- 0199. 二叉树的右视图
- 0200. 岛屿数量
- 0201. 数字范围按位与
- 0208. 实现 Trie (前缀树)
- 0209. 长度最小的子数组
- 0211. 添加与搜索单词 * 数据结构设计
- 0215. 数组中的第K个最大元素
- 0221. 最大正方形
- 0229. 求众数 II
- 0230. 二叉搜索树中第K小的元素
- 0236. 二叉树的最近公共祖先
- 0238. 除自身以外数组的乘积
- 0240. 搜索二维矩阵 II
- 0279. 完全平方数
- 0309. 最佳买卖股票时机含冷冻期
- 0322. 零钱兑换
- 0328. 奇偶链表
- 0334. 递增的三元子序列
- 0337. 打家劫舍 III
- 0343. 整数拆分
- 0365. 水壶问题
- 0378. 有序矩阵中第K小的元素
- 0380. 常数时间插入、删除和获取随机元素
- 0416. 分割等和子集
- 0445. 两数相加 II
- 0454. 四数相加 II
- 0494. 目标和
- 0516. 最长回文子序列
- 0518. 零钱兑换 II
- 0547. 朋友圈
- 0560. 和为K的子数组
- 0609. 在系统中查找重复文件
- 0611. 有效三角形的个数
- 0718. 最长重复子数组
- 0754. 到达终点数字
- 0785. 判断二分图
- 0820. 单词的压缩编码
- 0875. 爱吃香蕉的珂珂
- 0877. 石子游戏
- 0886. 可能的二分法
- 0900. RLE 迭代器
- 0912. 排序数组
- 0935. 骑士拨号器
- 1011. 在 D 天内送达包裹的能力
- 1014. 最佳观光组合
- 1015. 可被 K 整除的最小整数
- 1019. 链表中的下一个更大节点
- 1020. 飞地的数量
- 1023. 驼峰式匹配
- 1031. 两个非重叠子数组的最大和
- 1104. 二叉树寻路
- 1131.绝对值表达式的最大值
- 1186. 删除一次得到子数组最大和
- 1218. 最长定差子序列
- 1227. 飞机座位分配概率
- 1261. 在受污染的二叉树中查找元素
- 1262. 可被三整除的最大和
- 1297. 子串的最大出现次数
- 1310. 子数组异或查询
- 1334. 阈值距离内邻居最少的城市
- 1371.每个元音包含偶数次的最长子字符串
- 第六章 - 高频考题(困难)
- 0004. 寻找两个正序数组的中位数
- 0023. 合并K个升序链表
- 0025. K 个一组翻转链表
- 0030. 串联所有单词的子串
- 0032. 最长有效括号
- 0042. 接雨水
- 0052. N皇后 II
- 0084. 柱状图中最大的矩形
- 0085. 最大矩形
- 0124. 二叉树中的最大路径和
- 0128. 最长连续序列
- 0145. 二叉树的后序遍历
- 0212. 单词搜索 II
- 0239. 滑动窗口最大值
- 0295. 数据流的中位数
- 0301. 删除无效的括号
- 0312. 戳气球
- 0335. 路径交叉
- 0460. LFU缓存
- 0472. 连接词
- 0488. 祖玛游戏
- 0493. 翻转对
- 0887. 鸡蛋掉落
- 0895. 最大频率栈
- 1032. 字符流
- 1168. 水资源分配优化
- 1449. 数位成本和为目标值的最大数字
- 后序