# 1031. 两个非重叠子数组的最大和
## 题目地址(1031. 两个非重叠子数组的最大和)
<https://leetcode-cn.com/problems/maximum-sum-of-two-non-overlapping-subarrays/>
## 题目描述
```
<pre class="calibre18">```
给出非负整数数组 A ,返回两个非重叠(连续)子数组中元素的最大和,子数组的长度分别为 L 和 M。(这里需要澄清的是,长为 L 的子数组可以出现在长为 M 的子数组之前或之后。)
从形式上看,返回最大的 V,而 V = (A[i] + A[i+1] + ... + A[i+L-1]) + (A[j] + A[j+1] + ... + A[j+M-1]) 并满足下列条件之一:
0 <= i < i + L - 1 < j < j + M - 1 < A.length, 或
0 <= j < j + M - 1 < i < i + L - 1 < A.length.
示例 1:
输入:A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2
输出:20
解释:子数组的一种选择中,[9] 长度为 1,[6,5] 长度为 2。
示例 2:
输入:A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2
输出:29
解释:子数组的一种选择中,[3,8,1] 长度为 3,[8,9] 长度为 2。
示例 3:
输入:A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3
输出:31
解释:子数组的一种选择中,[5,6,0,9] 长度为 4,[0,3,8] 长度为 3。
提示:
L >= 1
M >= 1
L + M <= A.length <= 1000
0 <= A[i] <= 1000
```
```
## 前置知识
- 数组
## 公司
- 字节
## 思路(动态规划)
题目中要求在前N(数组长度)个数中找出长度分别为L和M的非重叠子数组之和的最大值, 因此, 我们可以定义数组A中前i个数可构成的非重叠子数组L和M的最大值为SUMM\[i\], 并找到SUMM\[i\]和SUMM\[i-1\]的关系, 那么最终解就是SUMM\[N\]. 以下为图解:
![](https://img.kancloud.cn/28/c1/28c13ae9e2ac2c3c2b66e9c9b95fa467_683x801.jpg)
## 关键点解析
1. 注意图中描述的都是A\[i-1\], 而不是A\[i\], 因为base case为空数组, 而不是A\[0\];
2. 求解图中ASUM数组的时候, 注意定义的是ASUM\[i\] = sum(A\[0:i\]), 因此当i等于0时, A\[0:0\]为空数组, 即: ASUM\[0\]为0, 而ASUM\[1\]才等于A\[0\];
3. 求解图中MAXL数组时, 注意i < L时, 没有意义, 因为长度不够, 所以从i = L时才开始求解;
4. 求解图中MAXM数组时, 也一样, 要从i = M时才开始求解;
5. 求解图中SUMM数组时, 因为我们需要一个L子数组和一个M子数组, 因此长度要大于等于L+M才有意义, 所以要从i = L + M时开始求解.
## 代码
- 语言支持: Python
Python Code:
```
<pre class="calibre18">```
<span class="hljs-class"><span class="hljs-keyword">class</span> <span class="hljs-title">Solution</span>:</span>
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">maxSumTwoNoOverlap</span><span class="hljs-params">(self, a: List[int], l: int, m: int)</span> -> int:</span>
<span class="hljs-string">"""
define asum[i] as the sum of subarray, a[0:i]
define maxl[i] as the maximum sum of l-length subarray in a[0:i]
define maxm[i] as the maximum sum of m-length subarray in a[0:i]
define msum[i] as the maximum sum of non-overlap l-length subarray and m-length subarray
case 1: a[i] is both not in l-length subarray and m-length subarray, then msum[i] = msum[i - 1]
case 2: a[i] is in l-length subarray, then msum[i] = asum[i] - asum[i-l] + maxm[i-l]
case 3: a[i] is in m-length subarray, then msum[i] = asum[i] - asum[i-m] + maxl[i-m]
so, msum[i] = max(msum[i - 1], asum[i] - asum[i-l] + maxl[i-l], asum[i] - asum[i-m] + maxm[i-m])
"""</span>
alen, tlen = len(a), l + m
asum = [<span class="hljs-params">0</span>] * (alen + <span class="hljs-params">1</span>)
maxl = [<span class="hljs-params">0</span>] * (alen + <span class="hljs-params">1</span>)
maxm = [<span class="hljs-params">0</span>] * (alen + <span class="hljs-params">1</span>)
msum = [<span class="hljs-params">0</span>] * (alen + <span class="hljs-params">1</span>)
<span class="hljs-keyword">for</span> i <span class="hljs-keyword">in</span> range(tlen):
<span class="hljs-keyword">if</span> i == <span class="hljs-params">1</span>:
asum[i] = a[i - <span class="hljs-params">1</span>]
<span class="hljs-keyword">elif</span> i > <span class="hljs-params">1</span>:
asum[i] = asum[i - <span class="hljs-params">1</span>] + a[i - <span class="hljs-params">1</span>]
<span class="hljs-keyword">if</span> i >= l:
maxl[i] = max(maxl[i - <span class="hljs-params">1</span>], asum[i] - asum[i - l])
<span class="hljs-keyword">if</span> i >= m:
maxm[i] = max(maxm[i - <span class="hljs-params">1</span>], asum[i] - asum[i - m])
<span class="hljs-keyword">for</span> i <span class="hljs-keyword">in</span> range(tlen, alen + <span class="hljs-params">1</span>):
asum[i] = asum[i - <span class="hljs-params">1</span>] + a[i - <span class="hljs-params">1</span>]
suml = asum[i] - asum[i - l]
summ = asum[i] - asum[i - m]
maxl[i] = max(maxl[i - <span class="hljs-params">1</span>], suml)
maxm[i] = max(maxm[i - <span class="hljs-params">1</span>], summ)
msum[i] = max(msum[i - <span class="hljs-params">1</span>], suml + maxm[i - l], summ + maxl[i - m])
<span class="hljs-keyword">return</span> msum[<span class="hljs-params">-1</span>]
```
```
## 扩展
1. 代码中, 求解了4个动态规划数组来求解最终值, 有没有可能只用两个数组来求解该题, 可以的话, 需要保留的又是哪两个数组?
2. 代码中, 求解的4动态规划数组的顺序能否改变, 哪些能改, 哪些不能改?
如果采用前缀和数组的话,可以只使用O(n)的空间来存储前缀和,O(1)的动态规划状态空间来完成。C++代码如下:
```
<pre class="calibre18">```
<span class="hljs-keyword">class</span> Solution {
<span class="hljs-keyword">public</span>:
<span class="hljs-function"><span class="hljs-keyword">int</span> <span class="hljs-title">maxSumTwoNoOverlap</span><span class="hljs-params">(<span class="hljs-params">vector</span><<span class="hljs-keyword">int</span>>& A, <span class="hljs-keyword">int</span> L, <span class="hljs-keyword">int</span> M)</span> </span>{
<span class="hljs-keyword">auto</span> tmp = <span class="hljs-params">vector</span><<span class="hljs-keyword">int</span>>{A[<span class="hljs-params">0</span>]};
<span class="hljs-keyword">for</span> (<span class="hljs-keyword">auto</span> i = <span class="hljs-params">1</span>; i < A.size(); ++i) {
tmp.push_back(A[i] + tmp[i - <span class="hljs-params">1</span>]);
}
<span class="hljs-keyword">auto</span> res = tmp[L + M - <span class="hljs-params">1</span>], lMax = tmp[L - <span class="hljs-params">1</span>], mMax = tmp[M - <span class="hljs-params">1</span>];
<span class="hljs-keyword">for</span> (<span class="hljs-keyword">auto</span> i = L + M; i < tmp.size(); ++i) {
lMax = max(lMax, tmp[i - M] - tmp[i - M - L]);
mMax = max(mMax, tmp[i - L] - tmp[i - L - M]);
res = max(res, max(lMax + tmp[i] - tmp[i - M], mMax + tmp[i] - tmp[i - L]));
}
<span class="hljs-keyword">return</span> res;
}
};
```
```
- Introduction
- 第一章 - 算法专题
- 数据结构
- 基础算法
- 二叉树的遍历
- 动态规划
- 哈夫曼编码和游程编码
- 布隆过滤器
- 字符串问题
- 前缀树专题
- 《贪婪策略》专题
- 《深度优先遍历》专题
- 滑动窗口(思路 + 模板)
- 位运算
- 设计题
- 小岛问题
- 最大公约数
- 并查集
- 前缀和
- 平衡二叉树专题
- 第二章 - 91 天学算法
- 第一期讲义-二分法
- 第一期讲义-双指针
- 第二期
- 第三章 - 精选题解
- 《日程安排》专题
- 《构造二叉树》专题
- 字典序列删除
- 百度的算法面试题 * 祖玛游戏
- 西法的刷题秘籍】一次搞定前缀和
- 字节跳动的算法面试题是什么难度?
- 字节跳动的算法面试题是什么难度?(第二弹)
- 《我是你的妈妈呀》 * 第一期
- 一文带你看懂二叉树的序列化
- 穿上衣服我就不认识你了?来聊聊最长上升子序列
- 你的衣服我扒了 * 《最长公共子序列》
- 一文看懂《最大子序列和问题》
- 第四章 - 高频考题(简单)
- 面试题 17.12. BiNode
- 0001. 两数之和
- 0020. 有效的括号
- 0021. 合并两个有序链表
- 0026. 删除排序数组中的重复项
- 0053. 最大子序和
- 0088. 合并两个有序数组
- 0101. 对称二叉树
- 0104. 二叉树的最大深度
- 0108. 将有序数组转换为二叉搜索树
- 0121. 买卖股票的最佳时机
- 0122. 买卖股票的最佳时机 II
- 0125. 验证回文串
- 0136. 只出现一次的数字
- 0155. 最小栈
- 0167. 两数之和 II * 输入有序数组
- 0169. 多数元素
- 0172. 阶乘后的零
- 0190. 颠倒二进制位
- 0191. 位1的个数
- 0198. 打家劫舍
- 0203. 移除链表元素
- 0206. 反转链表
- 0219. 存在重复元素 II
- 0226. 翻转二叉树
- 0232. 用栈实现队列
- 0263. 丑数
- 0283. 移动零
- 0342. 4的幂
- 0349. 两个数组的交集
- 0371. 两整数之和
- 0437. 路径总和 III
- 0455. 分发饼干
- 0575. 分糖果
- 0874. 模拟行走机器人
- 1260. 二维网格迁移
- 1332. 删除回文子序列
- 第五章 - 高频考题(中等)
- 0002. 两数相加
- 0003. 无重复字符的最长子串
- 0005. 最长回文子串
- 0011. 盛最多水的容器
- 0015. 三数之和
- 0017. 电话号码的字母组合
- 0019. 删除链表的倒数第N个节点
- 0022. 括号生成
- 0024. 两两交换链表中的节点
- 0029. 两数相除
- 0031. 下一个排列
- 0033. 搜索旋转排序数组
- 0039. 组合总和
- 0040. 组合总和 II
- 0046. 全排列
- 0047. 全排列 II
- 0048. 旋转图像
- 0049. 字母异位词分组
- 0050. Pow(x, n)
- 0055. 跳跃游戏
- 0056. 合并区间
- 0060. 第k个排列
- 0062. 不同路径
- 0073. 矩阵置零
- 0075. 颜色分类
- 0078. 子集
- 0079. 单词搜索
- 0080. 删除排序数组中的重复项 II
- 0086. 分隔链表
- 0090. 子集 II
- 0091. 解码方法
- 0092. 反转链表 II
- 0094. 二叉树的中序遍历
- 0095. 不同的二叉搜索树 II
- 0096. 不同的二叉搜索树
- 0098. 验证二叉搜索树
- 0102. 二叉树的层序遍历
- 0103. 二叉树的锯齿形层次遍历
- 105. 从前序与中序遍历序列构造二叉树
- 0113. 路径总和 II
- 0129. 求根到叶子节点数字之和
- 0130. 被围绕的区域
- 0131. 分割回文串
- 0139. 单词拆分
- 0144. 二叉树的前序遍历
- 0150. 逆波兰表达式求值
- 0152. 乘积最大子数组
- 0199. 二叉树的右视图
- 0200. 岛屿数量
- 0201. 数字范围按位与
- 0208. 实现 Trie (前缀树)
- 0209. 长度最小的子数组
- 0211. 添加与搜索单词 * 数据结构设计
- 0215. 数组中的第K个最大元素
- 0221. 最大正方形
- 0229. 求众数 II
- 0230. 二叉搜索树中第K小的元素
- 0236. 二叉树的最近公共祖先
- 0238. 除自身以外数组的乘积
- 0240. 搜索二维矩阵 II
- 0279. 完全平方数
- 0309. 最佳买卖股票时机含冷冻期
- 0322. 零钱兑换
- 0328. 奇偶链表
- 0334. 递增的三元子序列
- 0337. 打家劫舍 III
- 0343. 整数拆分
- 0365. 水壶问题
- 0378. 有序矩阵中第K小的元素
- 0380. 常数时间插入、删除和获取随机元素
- 0416. 分割等和子集
- 0445. 两数相加 II
- 0454. 四数相加 II
- 0494. 目标和
- 0516. 最长回文子序列
- 0518. 零钱兑换 II
- 0547. 朋友圈
- 0560. 和为K的子数组
- 0609. 在系统中查找重复文件
- 0611. 有效三角形的个数
- 0718. 最长重复子数组
- 0754. 到达终点数字
- 0785. 判断二分图
- 0820. 单词的压缩编码
- 0875. 爱吃香蕉的珂珂
- 0877. 石子游戏
- 0886. 可能的二分法
- 0900. RLE 迭代器
- 0912. 排序数组
- 0935. 骑士拨号器
- 1011. 在 D 天内送达包裹的能力
- 1014. 最佳观光组合
- 1015. 可被 K 整除的最小整数
- 1019. 链表中的下一个更大节点
- 1020. 飞地的数量
- 1023. 驼峰式匹配
- 1031. 两个非重叠子数组的最大和
- 1104. 二叉树寻路
- 1131.绝对值表达式的最大值
- 1186. 删除一次得到子数组最大和
- 1218. 最长定差子序列
- 1227. 飞机座位分配概率
- 1261. 在受污染的二叉树中查找元素
- 1262. 可被三整除的最大和
- 1297. 子串的最大出现次数
- 1310. 子数组异或查询
- 1334. 阈值距离内邻居最少的城市
- 1371.每个元音包含偶数次的最长子字符串
- 第六章 - 高频考题(困难)
- 0004. 寻找两个正序数组的中位数
- 0023. 合并K个升序链表
- 0025. K 个一组翻转链表
- 0030. 串联所有单词的子串
- 0032. 最长有效括号
- 0042. 接雨水
- 0052. N皇后 II
- 0084. 柱状图中最大的矩形
- 0085. 最大矩形
- 0124. 二叉树中的最大路径和
- 0128. 最长连续序列
- 0145. 二叉树的后序遍历
- 0212. 单词搜索 II
- 0239. 滑动窗口最大值
- 0295. 数据流的中位数
- 0301. 删除无效的括号
- 0312. 戳气球
- 0335. 路径交叉
- 0460. LFU缓存
- 0472. 连接词
- 0488. 祖玛游戏
- 0493. 翻转对
- 0887. 鸡蛋掉落
- 0895. 最大频率栈
- 1032. 字符流
- 1168. 水资源分配优化
- 1449. 数位成本和为目标值的最大数字
- 后序