# 0935. 骑士拨号器
## 题目地址 (935. 骑士拨号器)
<https://leetcode-cn.com/problems/knight-dialer/>
## 题目描述
```
<pre class="calibre18">```
国际象棋中的骑士可以按下图所示进行移动:
```
```
![](https://img.kancloud.cn/62/3b/623ba1013108392121e3de8c9bbb9bcb_183x205.jpg)
```
<pre class="calibre18">```
这一次,我们将 “骑士” 放在电话拨号盘的任意数字键(如上图所示)上,接下来,骑士将会跳 N-1 步。每一步必须是从一个数字键跳到另一个数字键。
每当它落在一个键上(包括骑士的初始位置),都会拨出键所对应的数字,总共按下 N 位数字。
你能用这种方式拨出多少个不同的号码?
因为答案可能很大,所以输出答案模 10^9 + 7。
示例 1:
输入:1
输出:10
示例 2:
输入:2
输出:20
示例 3:
输入:3
输出:46
提示:
1 <= N <= 5000
```
```
## 前置知识
- DFS
- 记忆化搜索
## 深度优先遍历(DFS)
## 公司
- 暂无
### 思路
这道题要求解一个数字。并且每一个格子能够跳的状态是确定的。 因此我们的思路就是“状态机”(动态规划),暴力遍历(BFS or DFS),这里我们使用 DFS。(注意这几种思路并无本质不同)
对于每一个号码键盘,我们可以转移的状态是确定的,我们做一个”预处理“,将这些状态转移记录到一个数组 jump,其中 jump\[i\] 表示 i 位置可以跳的点(用一个数组来表示)。问题转化为:
- 从 0 开始所有的路径
- 从 1 开始所有的路径
- 从 2 开始所有的路径
- ...
- 从 9 开始所有的路径
不管从几开始思路都是一样的。 我们使用一个函数 f(i, n) 表示`骑士在 i 的位置,还剩下 N 步可以走`的时候可以拨出的总的号码数。那么问题就是求解 `f(0, N) + f(1, N) + f(2, N) + ... + f(9, N)`。对于 f(i, n),我们初始化 cnt 为 0,由于 i 能跳的格子是 jump\[i\],我们将其 `cnt += f(j, n - 1)`,其中 j 属于 jump\[i\],最终返回 cnt 即可。
不难看出,这种算法有大量重复计算,我们使用记忆化递归形式来减少重复计算。 这种算法勉强通过。
### 代码
```
<pre class="calibre18">```
<span class="hljs-class"><span class="hljs-keyword">class</span> <span class="hljs-title">Solution</span>:</span>
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">knightDialer</span><span class="hljs-params">(self, N: int)</span> -> int:</span>
cnt = <span class="hljs-params">0</span>
jump = [[<span class="hljs-params">4</span>, <span class="hljs-params">6</span>], [<span class="hljs-params">6</span>, <span class="hljs-params">8</span>], [<span class="hljs-params">7</span>, <span class="hljs-params">9</span>], [<span class="hljs-params">4</span>, <span class="hljs-params">8</span>], [
<span class="hljs-params">0</span>, <span class="hljs-params">3</span>, <span class="hljs-params">9</span>], [], [<span class="hljs-params">0</span>, <span class="hljs-params">1</span>, <span class="hljs-params">7</span>], [<span class="hljs-params">2</span>, <span class="hljs-params">6</span>], [<span class="hljs-params">1</span>, <span class="hljs-params">3</span>], [<span class="hljs-params">2</span>, <span class="hljs-params">4</span>]]
visited = dict()
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">helper</span><span class="hljs-params">(i, n)</span>:</span>
<span class="hljs-keyword">if</span> (i, n) <span class="hljs-keyword">in</span> visited: <span class="hljs-keyword">return</span> visited[(i, n)]
<span class="hljs-keyword">if</span> n == <span class="hljs-params">1</span>:
<span class="hljs-keyword">return</span> <span class="hljs-params">1</span>
cnt = <span class="hljs-params">0</span>
<span class="hljs-keyword">for</span> j <span class="hljs-keyword">in</span> jump[i]:
cnt += helper(j, n - <span class="hljs-params">1</span>)
visited[(i, n)] = cnt
<span class="hljs-keyword">return</span> cnt
<span class="hljs-keyword">for</span> i <span class="hljs-keyword">in</span> range(<span class="hljs-params">10</span>):
cnt += helper(i, N)
<span class="hljs-keyword">return</span> cnt % (<span class="hljs-params">10</span>**<span class="hljs-params">9</span> + <span class="hljs-params">7</span>)
```
```
**复杂度分析**
- 时间复杂度:O(N)O(N)O(N)
- 空间复杂度:O(N)O(N)O(N)
## 朴素遍历
### 思路
我们使用迭代的形式来优化上述过程。我们初始化十个变量分别表示键盘不同位置能够拨出的号码数,并且初始化为 1。接下来我们只要循环 N - 1 次,不断更新状态即可。不过这种算法和上述算法并无本质不同。
### 代码
```
<pre class="calibre18">```
<span class="hljs-class"><span class="hljs-keyword">class</span> <span class="hljs-title">Solution</span>:</span>
<span class="hljs-function"><span class="hljs-keyword">def</span> <span class="hljs-title">knightDialer</span><span class="hljs-params">(self, N: int)</span> -> int:</span>
a0 = a1 = a2 = a3 = a4 = a5 = a6 = a7 = a8 = a9 = <span class="hljs-params">1</span>
<span class="hljs-keyword">for</span> _ <span class="hljs-keyword">in</span> range(N - <span class="hljs-params">1</span>):
a0, a1, a2, a3, a4, a5, a6, a7, a8, a9 = a4 + a6, a6 + a8, a7 + \
a9, a4 + a8, a0 + a3 + a9, <span class="hljs-params">0</span>, a0 + a1 + a7, a2 + a6, a1 + a3, a2 + a4
<span class="hljs-keyword">return</span> (a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9) % (<span class="hljs-params">10</span>**<span class="hljs-params">9</span> + <span class="hljs-params">7</span>)
```
```
**复杂度分析**
- 时间复杂度:O(N)O(N)O(N)
- 空间复杂度:O(1)O(1)O(1)
欢迎关注我的公众号《脑洞前端》获取更多更新鲜的 LeetCode 题解
![](https://img.kancloud.cn/77/1d/771d6f53e2a51febbcb6fa97f2899ac3_1586x578.jpg)
- Introduction
- 第一章 - 算法专题
- 数据结构
- 基础算法
- 二叉树的遍历
- 动态规划
- 哈夫曼编码和游程编码
- 布隆过滤器
- 字符串问题
- 前缀树专题
- 《贪婪策略》专题
- 《深度优先遍历》专题
- 滑动窗口(思路 + 模板)
- 位运算
- 设计题
- 小岛问题
- 最大公约数
- 并查集
- 前缀和
- 平衡二叉树专题
- 第二章 - 91 天学算法
- 第一期讲义-二分法
- 第一期讲义-双指针
- 第二期
- 第三章 - 精选题解
- 《日程安排》专题
- 《构造二叉树》专题
- 字典序列删除
- 百度的算法面试题 * 祖玛游戏
- 西法的刷题秘籍】一次搞定前缀和
- 字节跳动的算法面试题是什么难度?
- 字节跳动的算法面试题是什么难度?(第二弹)
- 《我是你的妈妈呀》 * 第一期
- 一文带你看懂二叉树的序列化
- 穿上衣服我就不认识你了?来聊聊最长上升子序列
- 你的衣服我扒了 * 《最长公共子序列》
- 一文看懂《最大子序列和问题》
- 第四章 - 高频考题(简单)
- 面试题 17.12. BiNode
- 0001. 两数之和
- 0020. 有效的括号
- 0021. 合并两个有序链表
- 0026. 删除排序数组中的重复项
- 0053. 最大子序和
- 0088. 合并两个有序数组
- 0101. 对称二叉树
- 0104. 二叉树的最大深度
- 0108. 将有序数组转换为二叉搜索树
- 0121. 买卖股票的最佳时机
- 0122. 买卖股票的最佳时机 II
- 0125. 验证回文串
- 0136. 只出现一次的数字
- 0155. 最小栈
- 0167. 两数之和 II * 输入有序数组
- 0169. 多数元素
- 0172. 阶乘后的零
- 0190. 颠倒二进制位
- 0191. 位1的个数
- 0198. 打家劫舍
- 0203. 移除链表元素
- 0206. 反转链表
- 0219. 存在重复元素 II
- 0226. 翻转二叉树
- 0232. 用栈实现队列
- 0263. 丑数
- 0283. 移动零
- 0342. 4的幂
- 0349. 两个数组的交集
- 0371. 两整数之和
- 0437. 路径总和 III
- 0455. 分发饼干
- 0575. 分糖果
- 0874. 模拟行走机器人
- 1260. 二维网格迁移
- 1332. 删除回文子序列
- 第五章 - 高频考题(中等)
- 0002. 两数相加
- 0003. 无重复字符的最长子串
- 0005. 最长回文子串
- 0011. 盛最多水的容器
- 0015. 三数之和
- 0017. 电话号码的字母组合
- 0019. 删除链表的倒数第N个节点
- 0022. 括号生成
- 0024. 两两交换链表中的节点
- 0029. 两数相除
- 0031. 下一个排列
- 0033. 搜索旋转排序数组
- 0039. 组合总和
- 0040. 组合总和 II
- 0046. 全排列
- 0047. 全排列 II
- 0048. 旋转图像
- 0049. 字母异位词分组
- 0050. Pow(x, n)
- 0055. 跳跃游戏
- 0056. 合并区间
- 0060. 第k个排列
- 0062. 不同路径
- 0073. 矩阵置零
- 0075. 颜色分类
- 0078. 子集
- 0079. 单词搜索
- 0080. 删除排序数组中的重复项 II
- 0086. 分隔链表
- 0090. 子集 II
- 0091. 解码方法
- 0092. 反转链表 II
- 0094. 二叉树的中序遍历
- 0095. 不同的二叉搜索树 II
- 0096. 不同的二叉搜索树
- 0098. 验证二叉搜索树
- 0102. 二叉树的层序遍历
- 0103. 二叉树的锯齿形层次遍历
- 105. 从前序与中序遍历序列构造二叉树
- 0113. 路径总和 II
- 0129. 求根到叶子节点数字之和
- 0130. 被围绕的区域
- 0131. 分割回文串
- 0139. 单词拆分
- 0144. 二叉树的前序遍历
- 0150. 逆波兰表达式求值
- 0152. 乘积最大子数组
- 0199. 二叉树的右视图
- 0200. 岛屿数量
- 0201. 数字范围按位与
- 0208. 实现 Trie (前缀树)
- 0209. 长度最小的子数组
- 0211. 添加与搜索单词 * 数据结构设计
- 0215. 数组中的第K个最大元素
- 0221. 最大正方形
- 0229. 求众数 II
- 0230. 二叉搜索树中第K小的元素
- 0236. 二叉树的最近公共祖先
- 0238. 除自身以外数组的乘积
- 0240. 搜索二维矩阵 II
- 0279. 完全平方数
- 0309. 最佳买卖股票时机含冷冻期
- 0322. 零钱兑换
- 0328. 奇偶链表
- 0334. 递增的三元子序列
- 0337. 打家劫舍 III
- 0343. 整数拆分
- 0365. 水壶问题
- 0378. 有序矩阵中第K小的元素
- 0380. 常数时间插入、删除和获取随机元素
- 0416. 分割等和子集
- 0445. 两数相加 II
- 0454. 四数相加 II
- 0494. 目标和
- 0516. 最长回文子序列
- 0518. 零钱兑换 II
- 0547. 朋友圈
- 0560. 和为K的子数组
- 0609. 在系统中查找重复文件
- 0611. 有效三角形的个数
- 0718. 最长重复子数组
- 0754. 到达终点数字
- 0785. 判断二分图
- 0820. 单词的压缩编码
- 0875. 爱吃香蕉的珂珂
- 0877. 石子游戏
- 0886. 可能的二分法
- 0900. RLE 迭代器
- 0912. 排序数组
- 0935. 骑士拨号器
- 1011. 在 D 天内送达包裹的能力
- 1014. 最佳观光组合
- 1015. 可被 K 整除的最小整数
- 1019. 链表中的下一个更大节点
- 1020. 飞地的数量
- 1023. 驼峰式匹配
- 1031. 两个非重叠子数组的最大和
- 1104. 二叉树寻路
- 1131.绝对值表达式的最大值
- 1186. 删除一次得到子数组最大和
- 1218. 最长定差子序列
- 1227. 飞机座位分配概率
- 1261. 在受污染的二叉树中查找元素
- 1262. 可被三整除的最大和
- 1297. 子串的最大出现次数
- 1310. 子数组异或查询
- 1334. 阈值距离内邻居最少的城市
- 1371.每个元音包含偶数次的最长子字符串
- 第六章 - 高频考题(困难)
- 0004. 寻找两个正序数组的中位数
- 0023. 合并K个升序链表
- 0025. K 个一组翻转链表
- 0030. 串联所有单词的子串
- 0032. 最长有效括号
- 0042. 接雨水
- 0052. N皇后 II
- 0084. 柱状图中最大的矩形
- 0085. 最大矩形
- 0124. 二叉树中的最大路径和
- 0128. 最长连续序列
- 0145. 二叉树的后序遍历
- 0212. 单词搜索 II
- 0239. 滑动窗口最大值
- 0295. 数据流的中位数
- 0301. 删除无效的括号
- 0312. 戳气球
- 0335. 路径交叉
- 0460. LFU缓存
- 0472. 连接词
- 0488. 祖玛游戏
- 0493. 翻转对
- 0887. 鸡蛋掉落
- 0895. 最大频率栈
- 1032. 字符流
- 1168. 水资源分配优化
- 1449. 数位成本和为目标值的最大数字
- 后序