【46.1 数组是什么?】
数组就是一堆变量或常量的集合。把一个数组里面某一个变量或者常量称为数组的元素,反过来也可以这么说,元素的集合就是数组。数组的最大特点就是内部所有的元素的地址都是挨家挨户相连的,同花顺似的,以第一个元素(下标是0的元素)为首地址,后来元素的地址挨个依次增大。首地址在RAM中的绝对地址往往是编译器自动分配的,我们不用管,可以看成是随机的。多说一句,在某些单片机,也可以通过特定的C语言关键词,强制要求编译器按我们的意愿,来分配到RAM中指定的某个绝对地址,这部分的内容这里暂时不讲。继续刚才的话题,首地址就像是一个坐标原点,一旦被编译器确定下来它在RAM中的地址,那么后面其它元素的地址都是在此基础上依次增大的,有规律的。正因为这个特点,数组在项目中往往起到缓存的作用。比如,在通信的项目中,用来作为一串数据的接收缓存。在界面显示的项目中,某个16x16点阵汉字的字模,需要一个内含32个元素的数组来作为缓存。在读写文件的项目中,也需要一个大数组来作为文件内容的缓存。在某些涉及复杂算法的项目,以数组作为缓存,并且通过配合循环语句或者指针,就可以快速批量的处理数据(循环语句和指针的相关知识后面章节会讲到)。总之,在项目应用中,数组无处不在。
数组分为一维数组,二维数组,三维数组。一维数组应用最广,二维数组其次,三维数组最少用。所以本教程只讲一维数组和二维数组,本节先讲一维数组。
【46.2 一维数组的书写格式和特点。】
一维数组不带初始化时候的定义格式如下:
数据类型 数组名\[数组元素总数N\];
数据类型是指unsigned char,unsigned int,unsigned long这类关键词;数组名就是由字母和数字组合而成的字符串,遵循常用变量的命名规则;N是数字,代表此数组内部有多少个元素。比如:
unsigned char x\[3\]; //这里的3是数组内部元素的总数,但不是下标。
上述这一行代码,就相当于一条语句定义了3个变量,这3个变量分别是x\[0\],x\[1\],x\[2\],但是不存在x\[3\]这个变量。这里,具体元素中括号内的“0,1,2”称为数组的下标,代表某个具体的元素。由此可见,数组有“批量定义”的特点。同时也要发现,此数组定义的N是3,代表内含3个元素变量,但是具体到某个元素的时候,下标不是从1开始,而是从0开始,最后一个也不是3而是2。可以这样描述,某个数组有N个元素,它具体元素的下标是从0开始,到N-1结束。那么问题来,如果一个数组明明最大只有N个元素,但是我在操作某个具体的元素时,非要用下标N或者N+1,也就是说,如果超过数组的范围的操作,会出现什么问题?后果严重吗?答案是:会导致数组越界出现异常或者编译不通过,可能会破坏其它数据,后果是严重的。因此大家使用数组的时候,要注意数组不能越界的问题。
刚刚讲了一维数组不带初始化的定义格式,现在接着讲带初始化的定义格式,如下:
数据类型 数组名\[数组元素总数N\]={元素0, 元素1,…元素N-1};
比如:
unsigned char y\[3\]={10,11,12};
此数组一行代码定义了3个变量,分别是y\[0\], y\[1\], y\[2\]。而y\[0\]初始化为10,y\[1\]初始化为11,y\[2\]初始化为12。
在程序中,操作数组某个变量元素时,下标可以是常量,比如y\[0\],此时的0就是常量;下标也可以是变量,比如y\[i\],此时的i就是变量。再强调一次,作为下标的常量或者变量i的数值必须小于数组定义时的元素个数,否则就会导致数组越界出现异常或者编译不通过。
中括号内的N什么时候是“数组的元素总数”,什么时候是“数组的元素下标”,这个问题对初学者很容易混淆。其实很简单,定义的时候是“数组的元素总数”,操作调用具体某个元素的时候是“数组的元素下标”。
【46.3 什么情况下可以省略定义的元素总数?】
一维数组在定义时,如果预先给它填写若干个初始化的数据,在语法上,也可以省略中括号\[N\]里面的元素总数N,这样编译器在编译时会根据初始化的总数来自动识别和定义此一维数组实际元素总数,分配对应数量的内存RAM。比如:
unsigned char y\[3\]={10,11,12}; //没有省略元素总数的写法
跟
unsigned char y\[\]={10,11,12}; //在初始化的情况下,省略了元素总数的写法。
的意义是一样的,都是合法的,都是C语言所允许的。注意,省略元素个数时必须要有初始化的数据,否则,编译器不知道此数组的长度,可能导致编译出错。
这个功能在实际应用中有什么作用呢?在实际应用中,此项功能一般会用在常量数组里,而不是变量的数组里。当在数组定义的前面加上“const”或者“code”(针对51单片机)的关键词时,原来“变量”的数组就会变成“常量”的数组,这时,如果把常量的数组用来作为某个转换表格,此功能就很实用。因为作为转换表格的常量数组,我们在编程程序的过程中,有可能随时往里面添加数组,这个时候,不用我们刻意去计算和调整数组的元素总数N,给我们写程序带来了便利。对于这个功能的应用,大家先有一个感性的认识即可,暂时不用深入去了解,因为后续的章节还会讲解这方面的内容。
【46.4 例程练习和分析。】
现在编写一个程序来熟悉一下一维数组的使用。
程序代码如下:
/\*---C语言学习区域的开始。-----------------------------------------------\*/
unsigned char x\[3\]; //此处的3不是下标,而是元素总数,里面的3个变量没有初始化
unsigned char y\[3\]={10,11,12}; //里面三个元素变量y\[0\],y\[1\],y\[2\]分别初始化为10,11,12
unsigned char i=0; //定义和初始化一个变量。用来做x数组的下标。
void main() //主函数
{
x\[i\]=25; //此时下标i为0.相当于把25赋值给x\[0\]
i=i+1; //i由0变成1.
x\[i\]=26; //此时下标i为1.相当于把26赋值给x\[1\]
i=i+1; //i由1变成2.
x\[i\]=27; //此时下标i为2.相当于把27赋值给x\[2\]
x\[i\]=x\[i\]+1; //此时x\[2\]自加1变成了28
View(x\[0\]); //把第1个数x\[0\]发送到电脑端的串口助手软件上观察。
View(x\[1\]); //把第2个数x\[1\]发送到电脑端的串口助手软件上观察。
View(x\[2\]); //把第3个数x\[2\]发送到电脑端的串口助手软件上观察。
View(y\[0\]); //把第4个数y\[0\]发送到电脑端的串口助手软件上观察。
View(y\[1\]); //把第5个数y\[1\]发送到电脑端的串口助手软件上观察。
View(y\[2\]); //把第6个数y\[2\]发送到电脑端的串口助手软件上观察。
while(1)
{
}
}
/\*---C语言学习区域的结束。-----------------------------------------------\*/
在电脑串口助手软件上观察到的程序执行现象如下:
开始...
第1个数
十进制:25
十六进制:19
二进制:11001
第2个数
十进制:26
十六进制:1A
二进制:11010
第3个数
十进制:28
十六进制:1C
二进制:11100
第4个数
十进制:10
十六进制:A
二进制:1010
第5个数
十进制:11
十六进制:B
二进制:1011
第6个数
十进制:12
十六进制:C
二进制:1100
分析:
变量元素x\[0\]为25。
变量元素x\[1\]为26。
变量元素x\[2\]为28。
变量元素y\[0\]为10。
变量元素y\[1\]为11。
变量元素y\[2\]为12。
【46.5 如何在单片机上练习本章节C语言程序?】
直接复制前面章节中第十一节的模板程序,练习代码时只需要更改“C语言学习区域”的代码就可以了,其它部分的代码不要动。编译后,把程序下载进带串口的51学习板,通过电脑端的串口助手软件就可以观察到不同的变量数值,详细方法请看第十一节内容。
- 首页
- 第一节:我的价值观
- 第二节:初学者的疑惑
- 第三节:单片机最重要的一个特性
- 第四节:平台软件和编译器软件的简介
- 第五节:用Keil2软件关闭,新建,打开一个工程的操作流程
- 第六节:把.c源代码编译成.hex机器码的操作流程
- 第七节:本节预留
- 第八节:把.hex机器码程序烧录到单片机的操作流程
- 第九节:本节预留
- 第十节:程序从哪里开始,要到哪里去?
- 第十一节:一个在单片机上练习C语言的模板程序
- 第十二节:变量的定义和赋值
- 【TODO】第十三节:赋值语句的覆盖性
- 【TODO】第十四节:二进制与字节单位,以及常用三种变量的取值范围
- 【TODO】第十五节:二进制与十六进制
- 【TODO】第十六节:十进制与十六进制
- 【TODO】第十七节:加法运算的5种常用组合
- 【TODO】第十八节:连加、自加、自加简写、自加1
- 【TODO】第十九节:加法运算的溢出
- 【TODO】第二十节:隐藏中间变量为何物?
- 【TODO】第二十一节:减法运算的5种常用组合。
- 【TODO】第二十二节:连减、自减、自减简写、自减1
- 【TODO】第二十三节:减法溢出与假想借位
- 【TODO】第二十四节:借用unsigned long类型的中间变量可以减少溢出现象
- 【TODO】第二十五节:乘法运算中的5种常用组合
- 【TODO】第二十六节:连乘、自乘、自乘简写,溢出
- 【TODO】第二十七节:整除求商
- 【TODO】第二十八节:整除求余
- 【TODO】第二十九节:“先余后商”和“先商后余”提取数据某位,哪家强?
- 【TODO】第三十节:逻辑运算符的“与”运算
- 【TODO】第三十一节:逻辑运算符的“或”运算
- 【TODO】第三十二节:逻辑运算符的“异或”运算
- 【TODO】第三十三节:逻辑运算符的“按位取反”和“非”运算
- 【TODO】第三十四节:移位运算的左移
- 【TODO】第三十五节:移位运算的右移
- 【TODO】第三十六节:括号的强制功能---改变运算优先级
- 【TODO】第三十七节:单字节变量赋值给多字节变量的疑惑
- 【TODO】第三十八节:第二种解决“运算过程中意外溢出”的便捷方法
- 【TODO】第三十九节:if判断语句以及常量变量的真假判断
- 【TODO】第四十节:关系符的等于“==”和不等于“!=”
- 【TODO】第四十一节:关系符的大于“>”和大于等于“>=”
- 【TODO】第四十二节:关系符的小于“<”和小于等于“<=”
- 【TODO】第四十三节:关系符中的关系符:与“&&”,或“||”
- 【TODO】第四十四节:小括号改变判断优先级
- 【TODO】第四十五节: 组合判断if...else if...else
- 【TODO】第四十六节: 一维数组
- 【TODO】第四十七节: 二维数组
- 【TODO】第四十八节: while循环语句
- 【TODO】第四十九节: 循环语句do while和for
- 【TODO】第五十节: 循环体内的continue和break语句
- 【TODO】第五十一节: for和while的循环嵌套
- 【TODO】第五十二节: 支撑程序框架的switch语句
- 【TODO】第五十三节: 使用函数的三要素和执行顺序
- 【TODO】第五十四节: 从全局变量和局部变量中感悟“栈”为何物
- 【TODO】第五十五节: 函数的作用和四种常见书写类型
- 【TODO】第五十六节: return在函数中的作用以及四个容易被忽略的功能
- 【TODO】第五十七节: static的重要作用
- 【TODO】第五十八节: const(./book/或code)在定义数据时的作用
- 【TODO】第五十九节: 全局“一键替换”功能的#define
- 【TODO】第六十节: 指针在变量(./book/或常量)中的基础知识
- 【TODO】第六十一节: 指针的中转站作用,地址自加法,地址偏移法
- 【TODO】第六十二节: 指针,大小端,化整为零,化零为整
- 【TODO】第六十三节: 指针“化整为零”和“化零为整”的“灵活”应用
- 【TODO】第六十四节: 指针让函数具备了多个相当于return的输出口
- 【TODO】第六十五节: 指针作为数组在函数中的入口作用
- 【TODO】第六十六节: 指针作为数组在函数中的出口作用
- 【TODO】第六十七节: 指针作为数组在函数中既“入口”又“出口”的作用
- 【TODO】第六十八节: 为函数接口指针“定向”的const关键词
- 【TODO】第六十九节: 宏函数sizeof(./book/)
- 【TODO】第七十节: “万能数组”的结构体
- 【TODO】第七十一节: 结构体的内存和赋值
- 【TODO】第七十二节: 结构体的指针
- 【TODO】第七十三节: 结构体数据的传输存储和还原
- 【TODO】第七十四节: 结构体指针在函数接口处的频繁应用
- 【TODO】第七十五节: 指针的名义(例:一维指针操作二维数组)
- 【TODO】第七十六节: 二维数组的指针
- 【TODO】第七十七节: 指针唯一的“单向输出”通道return
- 【TODO】第七十八节: typedef和#define和enum
- 【TODO】第七十九节: 各种变量常量的命名规范
- 【TODO】第八十节: 单片机IO口驱动LED
- 【TODO】第八十一节: 时间和速度的起源(指令周期和晶振频率)
- 【TODO】第八十二节: Delay“阻塞”延时控制LED闪烁
- 【TODO】第八十三节: 累计主循环的“非阻塞”延时控制LED闪烁
- 【TODO】第八十四节: 中断与中断函数
- 【TODO】第八十五节: 定时中断的寄存器配置
- 【TODO】第八十六节: 定时中断的“非阻塞”延时控制LED闪烁
- 【TODO】第八十七节: 一个定时中断产生N个软件定时器
- 【TODO】第八十八节: 两大核心框架理论(四区一线,switch外加定时中断)
- 【TODO】第八十九节: 跑马灯的三种境界
- 【TODO】第九十节: 多任务并行处理两路跑马灯
- 【TODO】第九十一节: 蜂鸣器的“非阻塞”驱动
- 【TODO】第九十二节: 独立按键的四大要素(自锁,消抖,非阻塞,清零式滤波)
- 【TODO】第九十三节: 独立按键鼠标式的单击与双击
- 【TODO】第九十四节: 两个独立按键构成的组合按键
- 【TODO】第九十五节: 两个独立按键的“电脑键盘式”组合按键
- 【TODO】第九十六节: 独立按键“一键两用”的短按与长按
- 【TODO】第九十七节: 独立按键按住不松手的连续均匀触发
- 【TODO】第九十八节: 独立按键按住不松手的“先加速后匀速”的触发
- 【TODO】第九十九节: “行列扫描式”矩阵按键的单个触发(原始版)
- 【TODO】第一百节: “行列扫描式”矩阵按键的单个触发(优化版)
- 【TODO】第一百零一节: 矩阵按键鼠标式的单击与双击
- 【TODO】第一百零二节: 两个“任意行输入”矩阵按键的“有序”组合触发
- 【TODO】第一百零三节: 两个“任意行输入”矩阵按键的“无序”组合触发
- 【TODO】第一百零四节: 矩阵按键“一键两用”的短按与长按
- 【TODO】第一百零五节: 矩阵按键按住不松手的连续均匀触发
- 【TODO】第一百零六节: 矩阵按键按住不松手的“先加速后匀速”触发
- 【TODO】第一百零七节: 开关感应器的识别与软件滤波
- 【TODO】第一百零八节: 按键控制跑马灯的启动和暂停和停止
- 【TODO】第一百零九节: 按键控制跑马灯的方向
- 【TODO】第一百一十节: 按键控制跑马灯的速度
- 第一百一十一节: 工业自动化设备的开关信号的运动控制
- 【TODO】第一百一十二节: 数码管显示的基础知识
- 【TODO】第一百一十三节: 动态扫描的数码管显示数字
- 【TODO】第一百一十四节: 动态扫描的数码管显示小数点
- 【TODO】第一百一十五节: 按键控制数码管的秒表
- 【TODO】第一百一十六节: 按键控制数码管的倒计时
- 【TODO】第一百一十七节: 按键切换数码管窗口来设置参数
- 【TODO】第一百一十八节: 按键让某位数码管闪烁跳动来设置参数
- 【TODO】第一百一十九节: 一个完整的人机界面的程序框架的脉络
- 【TODO】第一百二十节: 按键切换窗口切换局部来设置参数
- 【TODO】第一百二十一节: 可调参数的数码管倒计时
- 【TODO】第一百二十二节: 利用定时中断做的“时分秒”数显时钟
- 【TODO】第一百二十三节: 一种能省去一个lock自锁变量的按键驱动程序
- 【TODO】第一百二十四节: 数显仪表盘显示“速度、方向、计数器”的跑马灯
- 【TODO】第一百二十五节: “双线”的肢体接触通信
- 【TODO】第一百二十六节: “单线”的肢体接触通信
- 【TODO】第一百二十七节: 单片机串口接收数据的机制
- 【TODO】第一百二十八节: 接收“固定协议”的串口程序框架
- 【TODO】第一百二十九节: 接收带“动态密匙”与“累加和”校验数据的串口程序框架
- 【TODO】第一百三十节: 接收带“动态密匙”与“异或”校验数据的串口程序框架
- 【TODO】第一百三十一节: 灵活切换各种不同大小“接收内存”的串口程序框架
- 【TODO】第一百三十二节:“转发、透传、多种协议并存”的双缓存串口程序框架
- 【TODO】第一百三十三节:常用的三种串口发送函数
- 【TODO】第一百三十四节:“应用层半双工”双机串口通讯的程序框架