【78.1 typedef和#define和enum。】
typedef称为“类型定义”,#define称为“宏定义”,enum称为“枚举”。三者都有“一键替换”的能力,但是应用的侧重点各有不同。请看下面的例子,要写一个函数,把学生的分数分为3个等级,第1等级是“优”(范围:“优”>=90分),第2等级是“中”(范围:70分<=“中”<90分),第3等级是“差”(范围:“差”<70分),实现此算法的函数需要一个输入口和一个输出口,用来输入分数和输出判断结果,判断的结果用三个数字常量0,1,2来表示,0代表“优”,1代表“中”,2代表“差”。代码如下:
unsigned char GetGrade(unsigned char u8Score)
{
if(u8Score<70)
{
return 2; //2代表“差”
}
else if(u8Score>=70&&u8Score<90)
{
return 1; //1代表“中”
}
else
{
return 0; //0代表“优”
}
}
上述代码没有添加任何“typedef,#define,enum”,是“素颜照”级别的原始代码。现在对上述代码做一些美容,加入“typedef,#define,enum”的元素,代码如下:
\#define BAD\_MEDIUM 70 //宏定义。用BAD\_MEDIUM来表示“差”和“中”分数的分界线
\#define MEDIUM\_GOOD 90 //宏定义。用MEDIUM\_GOOD来表示“中”和“优”分数的分界线
typedef unsigned char u8; //用typedef为类型“unsigned char”增加一个名为“u8”的代言人
enum {GOOD = 0,MEDIUM,BAD}; //用enum把“0,1,2”三个常量转换为“GOOD,MEDIUM,BAD”
u8 GetGrade(u8 u8Score)
{
if(u8Score<BAD\_MEDIUM) //等级分数分界线的判断
{
return BAD; //BAD就是常量2,代表“差”。
}
else if(u8Score>=BAD\_MEDIUM&&u8Score<MEDIUM\_GOOD) //等级分数分界线的判断
{
return MEDIUM; //MEDIUM就是常量1,代表“中”
}
else
{
return GOOD; //GOOD就是常量0,代表“优”
}
}
代码赏析:
赏析片段一:
\#define BAD\_MEDIUM 70 //宏定义。用BAD\_MEDIUM来表示“差”和“中”分数的分界线
\#define MEDIUM\_GOOD 90 //宏定义。用MEDIUM\_GOOD来表示“良”和“优”分数的分界线
这里,用宏定义#define来关联分界线判断的分数,给后续代码的升级维护带来了便捷,因为用户有可能会要求把“差”“中”“优”三者的分数线进行调整,这时直接更改70和90这个数值就可以实现分数线的调整。可见,宏定义#define经常用在涉及“分界线”判断的场合。
赏析片段二:
typedef unsigned char u8; //用typedef为类型“unsigned char”增加一个名为“u8”的代言人
用类型定义typedef为类型“unsigned char”增加一个名为“u8”的代言人,u代表unsigned的u,8代表此类型占用8位,比如unsigned char就是占用8位的unsigned类型,所以用u8。如果是16位的unsigned类型就用u16,32位则用u32,这都是单片机界的常用命名习惯。上述代码用了类型定义,今后代码中凡是想定义一个unsigned char变量,都可以直接用u8来替代。这样有两个好处:第一个好处,u8的字符个数明显比unsigned char少,省了敲代码的力气。第二个好处,方便代码在各种不同硬件平台上的移植,因为不同的单片机不同的编译器对unsigned char,unsigned int,unsigned long翻译所得的结果是不一样的,比如,51单片机的unsigned int是占用16位的,而很多32位单片机的unsigned int是占用32位的,它们的16位则用unsigned short int类型,而不是unsigned int。
当我们用51单片机写代码的时候,可以如下类型定义:
typedef unsigned char u8;
typedef unsigned int u16;
typedef unsigned long u32;
当我们用32位的单片机写代码的时候,可以如下类型定义:
typedef unsigned char u8;
typedef unsigned short int u16;
typedef unsigned int u32;
这样,当我们想把51单片机的代码移到32位的单片机上时,只需要修改类型定义typedef这部分的代码,就可以快速做到代码在不同编译器平台上的类型兼容。
赏析片段三:
enum {GOOD = 0,MEDIUM,BAD}; //用enum把“0,1,2”三个常量转换为“GOOD,MEDIUM,BAD”
用枚举enum把“0,1,2”三个常量转换为“GOOD,MEDIUM,BAD”英文单词,最大的好处就是方便代码的阅读和修改。再多补充一点枚举的基础知识,上述代码中,第一个英文单词GOOD,经过“GOOD = 0”这条初始化的语句后,等效于常量0,后面的MEDIUM和BAD则C编译器自动对它们进行“累加1”排序,所以MEDIUM和BAD分别为常量1,2,这是C语言的语法规则。枚举enum的应用侧重在某些涉及到“状态”的数据类型,但是也不绝对。
【78.2 enum和typedef的相结合。】
enum一旦搭载上typedef后,可以把各自的特性发挥得淋漓尽致,产生另外一种常见的用途,那就是“人造”数据类型的用途,这里的“人造”解读为“人为制造”之意。比如上述78.1的函数u8 GetGrade(u8 u8Score),输出接口接收的是u8类型,但是内部return返回的是枚举类型的“GOOD,MEDIUM,BAD”其中之一,而u8虽然也能接收和兼容常量“GOOD,MEDIUM,BAD”,但是总是感觉有点“类型不匹配”的“不适感”,如果想消除这点“不适感”,可以用enum和typedef相结合的办法,修改后代码如下:
\#define BAD\_MEDIUM 70 //宏定义。用BAD\_MEDIUM来表示“差”和“中”分数的分界线
\#define MEDIUM\_GOOD 90 //宏定义。用MEDIUM\_GOOD来表示“良”和“优”分数的分界线
typedef unsigned char u8; //用typedef为类型“unsigned char”增加一个名为“u8”的代言人
typedef enum {
GOOD = 0,
MEDIUM,
BAD
} Grade; //通过typedef 和enum的相结合,“人造”出一个新的数据类型 Grade。
Grade GetGrade(u8 u8Score) //这里返回的类型是Grade,而“GOOD,MEDIUM,BAD”就是属于Grade
{
if(u8Score<BAD\_MEDIUM) //等级分数分界线的判断
{
return BAD; //BAD就是常量2,代表“差”。
}
else if(u8Score>=BAD\_MEDIUM&&u8Score<MEDIUM\_GOOD) //等级分数分界线的判断
{
return MEDIUM; //MEDIUM就是常量1,代表“中”
}
else
{
return GOOD; //GOOD就是常量0,代表“优”
}
}
【78.3 例程练习和分析。】
为了熟悉typedef,#define,enum的用法,现在要写一个函数,把学生的分数分为3个等级,第1等级是“优”(范围:“优”>=90分),第2等级是“中”(范围:70分<=“中”<90分),第3等级是“差”(范围:“差”<70分),实现此算法的函数需要一个输入口和一个输出口,用来输入分数和输出判断结果,判断的结果用三个数字常量0,1,2来表示,0代表“优”,1代表“中”,2代表“差”。
/\*---C语言学习区域的开始。-----------------------------------------------\*/
\#define BAD\_MEDIUM 70 //宏定义。用BAD\_MEDIUM来表示“差”和“中”分数的分界线
\#define MEDIUM\_GOOD 90 //宏定义。用MEDIUM\_GOOD来表示“良”和“优”分数的分界线
typedef unsigned char u8; //用typedef为类型“unsigned char”增加一个名为“u8”的代言人
typedef enum {
GOOD = 0,
MEDIUM,
BAD
} Grade; //通过typedef 和enum的相结合,“人造”出一个新的数据类型 Grade。
Grade GetGrade(u8 u8Score); //函数声明
Grade a; //“人造”出Grade类型的变量a,用来接收函数的判断结果。
Grade b; //“人造”出Grade类型的变量b,用来接收函数的判断结果。
Grade c; //“人造”出Grade类型的变量c,用来接收函数的判断结果。
Grade GetGrade(u8 u8Score) //这里返回的类型是Grade,而“GOOD,MEDIUM,BAD”就是属于Grade
{
if(u8Score<BAD\_MEDIUM) //等级分数分界线的判断
{
return BAD; //BAD就是常量2,代表“差”。
}
else if(u8Score>=BAD\_MEDIUM&&u8Score<MEDIUM\_GOOD) //等级分数分界线的判断
{
return MEDIUM; //MEDIUM就是常量1,代表“中”
}
else
{
return GOOD; //GOOD就是常量0,代表“优”
}
}
void main() //主函数
{
a=GetGrade(98); //输入98分,a来接收判断的结果
b=GetGrade(88); //输入88分,b来接收判断的结果
c=GetGrade(68); //输入68分,c来接收判断的结果
View(a); //在电脑端观察98分的判断结果a
View(b); //在电脑端观察88分的判断结果b
View(c); //在电脑端观察68分的判断结果c
while(1)
{
}
}
/\*---C语言学习区域的结束。-----------------------------------------------\*/
在电脑串口助手软件上观察到的程序执行现象如下:
开始...
第1个数
十进制:0
十六进制:0
二进制:0
第2个数
十进制:1
十六进制:1
二进制:1
第3个数
十进制:2
十六进制:2
二进制:10
分析:
98分的判断结果a为0,0代表“优”。
88分的判断结果b为1,1代表“中”。
68分的判断结果c为2,2代表“差”。
【78.4 如何在单片机上练习本章节C语言程序?】
直接复制前面章节中第十一节的模板程序,练习代码时只需要更改“C语言学习区域”的代码就可以了,其它部分的代码不要动。编译后,把程序下载进带串口的51学习板,通过电脑端的串口助手软件就可以观察到不同的变量数值,详细方法请看第十一节内容。
- 首页
- 第一节:我的价值观
- 第二节:初学者的疑惑
- 第三节:单片机最重要的一个特性
- 第四节:平台软件和编译器软件的简介
- 第五节:用Keil2软件关闭,新建,打开一个工程的操作流程
- 第六节:把.c源代码编译成.hex机器码的操作流程
- 第七节:本节预留
- 第八节:把.hex机器码程序烧录到单片机的操作流程
- 第九节:本节预留
- 第十节:程序从哪里开始,要到哪里去?
- 第十一节:一个在单片机上练习C语言的模板程序
- 第十二节:变量的定义和赋值
- 【TODO】第十三节:赋值语句的覆盖性
- 【TODO】第十四节:二进制与字节单位,以及常用三种变量的取值范围
- 【TODO】第十五节:二进制与十六进制
- 【TODO】第十六节:十进制与十六进制
- 【TODO】第十七节:加法运算的5种常用组合
- 【TODO】第十八节:连加、自加、自加简写、自加1
- 【TODO】第十九节:加法运算的溢出
- 【TODO】第二十节:隐藏中间变量为何物?
- 【TODO】第二十一节:减法运算的5种常用组合。
- 【TODO】第二十二节:连减、自减、自减简写、自减1
- 【TODO】第二十三节:减法溢出与假想借位
- 【TODO】第二十四节:借用unsigned long类型的中间变量可以减少溢出现象
- 【TODO】第二十五节:乘法运算中的5种常用组合
- 【TODO】第二十六节:连乘、自乘、自乘简写,溢出
- 【TODO】第二十七节:整除求商
- 【TODO】第二十八节:整除求余
- 【TODO】第二十九节:“先余后商”和“先商后余”提取数据某位,哪家强?
- 【TODO】第三十节:逻辑运算符的“与”运算
- 【TODO】第三十一节:逻辑运算符的“或”运算
- 【TODO】第三十二节:逻辑运算符的“异或”运算
- 【TODO】第三十三节:逻辑运算符的“按位取反”和“非”运算
- 【TODO】第三十四节:移位运算的左移
- 【TODO】第三十五节:移位运算的右移
- 【TODO】第三十六节:括号的强制功能---改变运算优先级
- 【TODO】第三十七节:单字节变量赋值给多字节变量的疑惑
- 【TODO】第三十八节:第二种解决“运算过程中意外溢出”的便捷方法
- 【TODO】第三十九节:if判断语句以及常量变量的真假判断
- 【TODO】第四十节:关系符的等于“==”和不等于“!=”
- 【TODO】第四十一节:关系符的大于“>”和大于等于“>=”
- 【TODO】第四十二节:关系符的小于“<”和小于等于“<=”
- 【TODO】第四十三节:关系符中的关系符:与“&&”,或“||”
- 【TODO】第四十四节:小括号改变判断优先级
- 【TODO】第四十五节: 组合判断if...else if...else
- 【TODO】第四十六节: 一维数组
- 【TODO】第四十七节: 二维数组
- 【TODO】第四十八节: while循环语句
- 【TODO】第四十九节: 循环语句do while和for
- 【TODO】第五十节: 循环体内的continue和break语句
- 【TODO】第五十一节: for和while的循环嵌套
- 【TODO】第五十二节: 支撑程序框架的switch语句
- 【TODO】第五十三节: 使用函数的三要素和执行顺序
- 【TODO】第五十四节: 从全局变量和局部变量中感悟“栈”为何物
- 【TODO】第五十五节: 函数的作用和四种常见书写类型
- 【TODO】第五十六节: return在函数中的作用以及四个容易被忽略的功能
- 【TODO】第五十七节: static的重要作用
- 【TODO】第五十八节: const(./book/或code)在定义数据时的作用
- 【TODO】第五十九节: 全局“一键替换”功能的#define
- 【TODO】第六十节: 指针在变量(./book/或常量)中的基础知识
- 【TODO】第六十一节: 指针的中转站作用,地址自加法,地址偏移法
- 【TODO】第六十二节: 指针,大小端,化整为零,化零为整
- 【TODO】第六十三节: 指针“化整为零”和“化零为整”的“灵活”应用
- 【TODO】第六十四节: 指针让函数具备了多个相当于return的输出口
- 【TODO】第六十五节: 指针作为数组在函数中的入口作用
- 【TODO】第六十六节: 指针作为数组在函数中的出口作用
- 【TODO】第六十七节: 指针作为数组在函数中既“入口”又“出口”的作用
- 【TODO】第六十八节: 为函数接口指针“定向”的const关键词
- 【TODO】第六十九节: 宏函数sizeof(./book/)
- 【TODO】第七十节: “万能数组”的结构体
- 【TODO】第七十一节: 结构体的内存和赋值
- 【TODO】第七十二节: 结构体的指针
- 【TODO】第七十三节: 结构体数据的传输存储和还原
- 【TODO】第七十四节: 结构体指针在函数接口处的频繁应用
- 【TODO】第七十五节: 指针的名义(例:一维指针操作二维数组)
- 【TODO】第七十六节: 二维数组的指针
- 【TODO】第七十七节: 指针唯一的“单向输出”通道return
- 【TODO】第七十八节: typedef和#define和enum
- 【TODO】第七十九节: 各种变量常量的命名规范
- 【TODO】第八十节: 单片机IO口驱动LED
- 【TODO】第八十一节: 时间和速度的起源(指令周期和晶振频率)
- 【TODO】第八十二节: Delay“阻塞”延时控制LED闪烁
- 【TODO】第八十三节: 累计主循环的“非阻塞”延时控制LED闪烁
- 【TODO】第八十四节: 中断与中断函数
- 【TODO】第八十五节: 定时中断的寄存器配置
- 【TODO】第八十六节: 定时中断的“非阻塞”延时控制LED闪烁
- 【TODO】第八十七节: 一个定时中断产生N个软件定时器
- 【TODO】第八十八节: 两大核心框架理论(四区一线,switch外加定时中断)
- 【TODO】第八十九节: 跑马灯的三种境界
- 【TODO】第九十节: 多任务并行处理两路跑马灯
- 【TODO】第九十一节: 蜂鸣器的“非阻塞”驱动
- 【TODO】第九十二节: 独立按键的四大要素(自锁,消抖,非阻塞,清零式滤波)
- 【TODO】第九十三节: 独立按键鼠标式的单击与双击
- 【TODO】第九十四节: 两个独立按键构成的组合按键
- 【TODO】第九十五节: 两个独立按键的“电脑键盘式”组合按键
- 【TODO】第九十六节: 独立按键“一键两用”的短按与长按
- 【TODO】第九十七节: 独立按键按住不松手的连续均匀触发
- 【TODO】第九十八节: 独立按键按住不松手的“先加速后匀速”的触发
- 【TODO】第九十九节: “行列扫描式”矩阵按键的单个触发(原始版)
- 【TODO】第一百节: “行列扫描式”矩阵按键的单个触发(优化版)
- 【TODO】第一百零一节: 矩阵按键鼠标式的单击与双击
- 【TODO】第一百零二节: 两个“任意行输入”矩阵按键的“有序”组合触发
- 【TODO】第一百零三节: 两个“任意行输入”矩阵按键的“无序”组合触发
- 【TODO】第一百零四节: 矩阵按键“一键两用”的短按与长按
- 【TODO】第一百零五节: 矩阵按键按住不松手的连续均匀触发
- 【TODO】第一百零六节: 矩阵按键按住不松手的“先加速后匀速”触发
- 【TODO】第一百零七节: 开关感应器的识别与软件滤波
- 【TODO】第一百零八节: 按键控制跑马灯的启动和暂停和停止
- 【TODO】第一百零九节: 按键控制跑马灯的方向
- 【TODO】第一百一十节: 按键控制跑马灯的速度
- 第一百一十一节: 工业自动化设备的开关信号的运动控制
- 【TODO】第一百一十二节: 数码管显示的基础知识
- 【TODO】第一百一十三节: 动态扫描的数码管显示数字
- 【TODO】第一百一十四节: 动态扫描的数码管显示小数点
- 【TODO】第一百一十五节: 按键控制数码管的秒表
- 【TODO】第一百一十六节: 按键控制数码管的倒计时
- 【TODO】第一百一十七节: 按键切换数码管窗口来设置参数
- 【TODO】第一百一十八节: 按键让某位数码管闪烁跳动来设置参数
- 【TODO】第一百一十九节: 一个完整的人机界面的程序框架的脉络
- 【TODO】第一百二十节: 按键切换窗口切换局部来设置参数
- 【TODO】第一百二十一节: 可调参数的数码管倒计时
- 【TODO】第一百二十二节: 利用定时中断做的“时分秒”数显时钟
- 【TODO】第一百二十三节: 一种能省去一个lock自锁变量的按键驱动程序
- 【TODO】第一百二十四节: 数显仪表盘显示“速度、方向、计数器”的跑马灯
- 【TODO】第一百二十五节: “双线”的肢体接触通信
- 【TODO】第一百二十六节: “单线”的肢体接触通信
- 【TODO】第一百二十七节: 单片机串口接收数据的机制
- 【TODO】第一百二十八节: 接收“固定协议”的串口程序框架
- 【TODO】第一百二十九节: 接收带“动态密匙”与“累加和”校验数据的串口程序框架
- 【TODO】第一百三十节: 接收带“动态密匙”与“异或”校验数据的串口程序框架
- 【TODO】第一百三十一节: 灵活切换各种不同大小“接收内存”的串口程序框架
- 【TODO】第一百三十二节:“转发、透传、多种协议并存”的双缓存串口程序框架
- 【TODO】第一百三十三节:常用的三种串口发送函数
- 【TODO】第一百三十四节:“应用层半双工”双机串口通讯的程序框架