【126.1 同步通信与异步通信。】
既然芯片之间通信离不开“数据”和“时钟”这两种信号,那么是不是说,通信必须至少两根线(双线)以上?不是。单线也可以通信,继续拿甲乙两人的肢体通信做比喻,这一次只允许用一只“手”不许用“脚”,“手”继续做数据信号,那么时钟信号在哪?时钟信号在甲乙两人各自的“心跳”。用两个人的“心跳”作为时钟信号就有两个时钟节拍,初学者可能在这里会有疑惑,这两人的“心跳”频率可能不一致,时钟节拍可能不同步,怎么能进行通信呢?说到这里,恰好通讯界有两个专业的概念,一个是“同步通信”另一个是“异步通信”。像上一节讲那种用脚的动作“踢一脚”作为时钟信号,这个时钟信号只有一个,对于通讯的甲乙双方是实时“同步的”时钟信号,因此这种通信叫做“同步通信”。而本节提到的用两个人各自的“心跳”做时钟信号,有两个时钟源,时钟信号是“不同步的”,这种通信叫做“异步通信”。
【126.2 异步通信的原理。】
既然两人各自的“心跳”不同步(异步),而且“心跳”是从甲乙两人出生开始就一直持续存在不停跳动的,那么发送一个字节的数据是从什么时候开始到什么时候结束就必须事先有一个约定。他们是这样约定的:
(1) 平时的待命状态。甲是发送方,乙是接收方,平时待命没有发送数据的时候,甲手的状态一直是“松开”的(电平1)。
(2) 1个开始位与8个数据位。当甲要发送数据给乙的时候,第1个心跳甲先“握紧”(电平0)代表“开始位”,“开始位”用来通知乙方请做好接收数据的准备,然后第2个到第9个心跳甲依次靠手的状态发送8个位的字节数据(数据位),乙方因为“甲的开始位”的存在已经做好了接收第2个心跳数据的准备,因此乙方能完全接收第2个心跳至第9个心跳的数据位的数据。
(3) 1个停止位。甲发送了第9个心跳的数据后,必须马上恢复到待命的状态“松开”(电平1),以便为下一次发送数据时能正确发送“开始位”,但是这个待命的状态“松开”至少应该持续多长的时间呢?至少持续1个“心跳”的时间以上。这样,虽然两个人的“心跳”不同步并且频率也不一样,但是只要8个“心跳”的累加误差不超过1个“心跳”的停止位时间,数据就肯定不会错位。这个至少持续1个“心跳”的待命状态就起到消除累加误差的作用。
【126.3 异步的肢体通信的例子。】
“手”可以产生“两种”状态“握紧”和“松开”,甲发送数据给乙,乙每“心跳”一次就去判断一次手的状态,“握紧”代表二进制的0,“松开”代表二进制的1,这样,如果他们之间想传输一个字节的十六进制数据0x59,只需把十六进制的数据0x59展开成二进制01011001,从右到左(从低位到高位)以“位”为单位挨个发送,过程如下:
平时手的状态一直处于“松开”的待命状态,直到手第一次出现“握紧”的状态......
第一次“心跳”:手的状态是“握紧”,开始位,通知乙作好接收即将过来的8个“心跳”数据位。
第二次“心跳”:手的状态是“松开”,数据位bit0,记录1。
第三次“心跳”:手的状态是“握紧”,数据位bit1,记录0。
第四次“心跳”:手的状态是“握紧”,数据位bit2,记录0。
第五次“心跳”:手的状态是“松开”,数据位bit3,记录1。
第六次“心跳”:手的状态是“松开”,数据位bit4,记录1。
第七次“心跳”:手的状态是“握紧”,数据位bit5,记录0。
第八次“心跳”:手的状态是“松开”,数据位bit6,记录1。
第九次“心跳”:手的状态是“握紧”,数据位bit7,记录0。
第十次“心跳”:手的状态是“松开”,停止位,至少持续1个“心跳”的待命状态。
现在把上述的“单线”(异步)的肢体通信过程翻译成C语言代码,甲发送数据的代码如下:
sbit Hand\_DATA=P2^6; //手的数据线
void SendByte(unsiged char u8Data) //甲发送数据的发送函数
{
static unsigned char i;
Hand\_DATA=0; //开始位。0代表“握紧”
Delay(); //甲的心跳间隔时间
for(i=0;i<8;i++) //发送8个数据位
{
if(0==(u8Data&0x01)) //根据数据的每一位状态,发送对应的位数据。
{
Hand\_DATA=0; //0代表“握紧”
}
else
{
Hand\_DATA=1; //1代表“松开”
}
Delay(); //甲的心跳间隔时间
u8Data=u8Data>>1; //右移一位,为即将发送下一位做准备
}
Hand\_DATA=1; //停止位。1代表“松开”
Delay(); //甲的心跳间隔时间
}
- 首页
- 第一节:我的价值观
- 第二节:初学者的疑惑
- 第三节:单片机最重要的一个特性
- 第四节:平台软件和编译器软件的简介
- 第五节:用Keil2软件关闭,新建,打开一个工程的操作流程
- 第六节:把.c源代码编译成.hex机器码的操作流程
- 第七节:本节预留
- 第八节:把.hex机器码程序烧录到单片机的操作流程
- 第九节:本节预留
- 第十节:程序从哪里开始,要到哪里去?
- 第十一节:一个在单片机上练习C语言的模板程序
- 第十二节:变量的定义和赋值
- 【TODO】第十三节:赋值语句的覆盖性
- 【TODO】第十四节:二进制与字节单位,以及常用三种变量的取值范围
- 【TODO】第十五节:二进制与十六进制
- 【TODO】第十六节:十进制与十六进制
- 【TODO】第十七节:加法运算的5种常用组合
- 【TODO】第十八节:连加、自加、自加简写、自加1
- 【TODO】第十九节:加法运算的溢出
- 【TODO】第二十节:隐藏中间变量为何物?
- 【TODO】第二十一节:减法运算的5种常用组合。
- 【TODO】第二十二节:连减、自减、自减简写、自减1
- 【TODO】第二十三节:减法溢出与假想借位
- 【TODO】第二十四节:借用unsigned long类型的中间变量可以减少溢出现象
- 【TODO】第二十五节:乘法运算中的5种常用组合
- 【TODO】第二十六节:连乘、自乘、自乘简写,溢出
- 【TODO】第二十七节:整除求商
- 【TODO】第二十八节:整除求余
- 【TODO】第二十九节:“先余后商”和“先商后余”提取数据某位,哪家强?
- 【TODO】第三十节:逻辑运算符的“与”运算
- 【TODO】第三十一节:逻辑运算符的“或”运算
- 【TODO】第三十二节:逻辑运算符的“异或”运算
- 【TODO】第三十三节:逻辑运算符的“按位取反”和“非”运算
- 【TODO】第三十四节:移位运算的左移
- 【TODO】第三十五节:移位运算的右移
- 【TODO】第三十六节:括号的强制功能---改变运算优先级
- 【TODO】第三十七节:单字节变量赋值给多字节变量的疑惑
- 【TODO】第三十八节:第二种解决“运算过程中意外溢出”的便捷方法
- 【TODO】第三十九节:if判断语句以及常量变量的真假判断
- 【TODO】第四十节:关系符的等于“==”和不等于“!=”
- 【TODO】第四十一节:关系符的大于“>”和大于等于“>=”
- 【TODO】第四十二节:关系符的小于“<”和小于等于“<=”
- 【TODO】第四十三节:关系符中的关系符:与“&&”,或“||”
- 【TODO】第四十四节:小括号改变判断优先级
- 【TODO】第四十五节: 组合判断if...else if...else
- 【TODO】第四十六节: 一维数组
- 【TODO】第四十七节: 二维数组
- 【TODO】第四十八节: while循环语句
- 【TODO】第四十九节: 循环语句do while和for
- 【TODO】第五十节: 循环体内的continue和break语句
- 【TODO】第五十一节: for和while的循环嵌套
- 【TODO】第五十二节: 支撑程序框架的switch语句
- 【TODO】第五十三节: 使用函数的三要素和执行顺序
- 【TODO】第五十四节: 从全局变量和局部变量中感悟“栈”为何物
- 【TODO】第五十五节: 函数的作用和四种常见书写类型
- 【TODO】第五十六节: return在函数中的作用以及四个容易被忽略的功能
- 【TODO】第五十七节: static的重要作用
- 【TODO】第五十八节: const(./book/或code)在定义数据时的作用
- 【TODO】第五十九节: 全局“一键替换”功能的#define
- 【TODO】第六十节: 指针在变量(./book/或常量)中的基础知识
- 【TODO】第六十一节: 指针的中转站作用,地址自加法,地址偏移法
- 【TODO】第六十二节: 指针,大小端,化整为零,化零为整
- 【TODO】第六十三节: 指针“化整为零”和“化零为整”的“灵活”应用
- 【TODO】第六十四节: 指针让函数具备了多个相当于return的输出口
- 【TODO】第六十五节: 指针作为数组在函数中的入口作用
- 【TODO】第六十六节: 指针作为数组在函数中的出口作用
- 【TODO】第六十七节: 指针作为数组在函数中既“入口”又“出口”的作用
- 【TODO】第六十八节: 为函数接口指针“定向”的const关键词
- 【TODO】第六十九节: 宏函数sizeof(./book/)
- 【TODO】第七十节: “万能数组”的结构体
- 【TODO】第七十一节: 结构体的内存和赋值
- 【TODO】第七十二节: 结构体的指针
- 【TODO】第七十三节: 结构体数据的传输存储和还原
- 【TODO】第七十四节: 结构体指针在函数接口处的频繁应用
- 【TODO】第七十五节: 指针的名义(例:一维指针操作二维数组)
- 【TODO】第七十六节: 二维数组的指针
- 【TODO】第七十七节: 指针唯一的“单向输出”通道return
- 【TODO】第七十八节: typedef和#define和enum
- 【TODO】第七十九节: 各种变量常量的命名规范
- 【TODO】第八十节: 单片机IO口驱动LED
- 【TODO】第八十一节: 时间和速度的起源(指令周期和晶振频率)
- 【TODO】第八十二节: Delay“阻塞”延时控制LED闪烁
- 【TODO】第八十三节: 累计主循环的“非阻塞”延时控制LED闪烁
- 【TODO】第八十四节: 中断与中断函数
- 【TODO】第八十五节: 定时中断的寄存器配置
- 【TODO】第八十六节: 定时中断的“非阻塞”延时控制LED闪烁
- 【TODO】第八十七节: 一个定时中断产生N个软件定时器
- 【TODO】第八十八节: 两大核心框架理论(四区一线,switch外加定时中断)
- 【TODO】第八十九节: 跑马灯的三种境界
- 【TODO】第九十节: 多任务并行处理两路跑马灯
- 【TODO】第九十一节: 蜂鸣器的“非阻塞”驱动
- 【TODO】第九十二节: 独立按键的四大要素(自锁,消抖,非阻塞,清零式滤波)
- 【TODO】第九十三节: 独立按键鼠标式的单击与双击
- 【TODO】第九十四节: 两个独立按键构成的组合按键
- 【TODO】第九十五节: 两个独立按键的“电脑键盘式”组合按键
- 【TODO】第九十六节: 独立按键“一键两用”的短按与长按
- 【TODO】第九十七节: 独立按键按住不松手的连续均匀触发
- 【TODO】第九十八节: 独立按键按住不松手的“先加速后匀速”的触发
- 【TODO】第九十九节: “行列扫描式”矩阵按键的单个触发(原始版)
- 【TODO】第一百节: “行列扫描式”矩阵按键的单个触发(优化版)
- 【TODO】第一百零一节: 矩阵按键鼠标式的单击与双击
- 【TODO】第一百零二节: 两个“任意行输入”矩阵按键的“有序”组合触发
- 【TODO】第一百零三节: 两个“任意行输入”矩阵按键的“无序”组合触发
- 【TODO】第一百零四节: 矩阵按键“一键两用”的短按与长按
- 【TODO】第一百零五节: 矩阵按键按住不松手的连续均匀触发
- 【TODO】第一百零六节: 矩阵按键按住不松手的“先加速后匀速”触发
- 【TODO】第一百零七节: 开关感应器的识别与软件滤波
- 【TODO】第一百零八节: 按键控制跑马灯的启动和暂停和停止
- 【TODO】第一百零九节: 按键控制跑马灯的方向
- 【TODO】第一百一十节: 按键控制跑马灯的速度
- 第一百一十一节: 工业自动化设备的开关信号的运动控制
- 【TODO】第一百一十二节: 数码管显示的基础知识
- 【TODO】第一百一十三节: 动态扫描的数码管显示数字
- 【TODO】第一百一十四节: 动态扫描的数码管显示小数点
- 【TODO】第一百一十五节: 按键控制数码管的秒表
- 【TODO】第一百一十六节: 按键控制数码管的倒计时
- 【TODO】第一百一十七节: 按键切换数码管窗口来设置参数
- 【TODO】第一百一十八节: 按键让某位数码管闪烁跳动来设置参数
- 【TODO】第一百一十九节: 一个完整的人机界面的程序框架的脉络
- 【TODO】第一百二十节: 按键切换窗口切换局部来设置参数
- 【TODO】第一百二十一节: 可调参数的数码管倒计时
- 【TODO】第一百二十二节: 利用定时中断做的“时分秒”数显时钟
- 【TODO】第一百二十三节: 一种能省去一个lock自锁变量的按键驱动程序
- 【TODO】第一百二十四节: 数显仪表盘显示“速度、方向、计数器”的跑马灯
- 【TODO】第一百二十五节: “双线”的肢体接触通信
- 【TODO】第一百二十六节: “单线”的肢体接触通信
- 【TODO】第一百二十七节: 单片机串口接收数据的机制
- 【TODO】第一百二十八节: 接收“固定协议”的串口程序框架
- 【TODO】第一百二十九节: 接收带“动态密匙”与“累加和”校验数据的串口程序框架
- 【TODO】第一百三十节: 接收带“动态密匙”与“异或”校验数据的串口程序框架
- 【TODO】第一百三十一节: 灵活切换各种不同大小“接收内存”的串口程序框架
- 【TODO】第一百三十二节:“转发、透传、多种协议并存”的双缓存串口程序框架
- 【TODO】第一百三十三节:常用的三种串口发送函数
- 【TODO】第一百三十四节:“应用层半双工”双机串口通讯的程序框架