【133.1 发送单字节的底层驱动函数。】
单片机内置的“独立硬件串口模块”能直接实现“发送一个字节数据”的基础功能,因此,发送单字节的函数是应用层与硬件层的最小单位的接口函数,也称为底层驱动函数。应用层再复杂的发送函数都基于此最小单位的接口函数来实现。单片机应用层与“独立硬件串口模块”之间的接口通信是靠寄存器SBUF作为中间载体的,要实现发送单字节的最小接口函数,有如下三个关键点。
第一个,单片机应用层如何知道“硬件模块”已经发送完了一个字节,靠什么来识别?答:在初始化函数里,可以把“硬件模块”配置成,每发送完一个字节后都产生一次发送中断,在发送中断函数里让一个全局变量从0变成1,依此全局变量作为识别是否已经发送完一个字节的标志。
第二个,发送一个字节数据的时候,如果“硬件模块”通讯异常,没有按预期产生发送中断,单片机就会一直处于死循环等待“完成标志”的状态,怎么办?答:在等待“完成标志”的时候,加入超时处理的机制。
第三个,在连续发送一堆数据时,如果接收方(或者上位机)发现有丢失数据的时候,如何调节此发送函数?答:可以根据实际调试的结果,如果接收方发现丢失数据,可以尝试在每发送一个字节之后插入一个Delay延时,延时的时间长度根据实际调试为准。我个人的经验中,感觉STM32这类M3核或者M4核的单片机在发送一个字节的时候只需判断是否发送完成的标志位即可,不需要插入Delay延时。但是在其它某些个别厂家单片机的串口发送数据中,是需要插入Delay延时作为调节,否则在连续发送一堆数据时会丢失数据,这个,应该以实际调试项目为准。
片段的讲解代码如下:
unsigned char Gu8ReceData;
unsigned char Gu8SendByteFinish=0; //发送一个字节完成的标志
void usart(void) interrupt 4 //串口的中断函数
{
if(1==RI)
{
RI = 0;
Gu8ReceData=SBUF;
}
else //发送数据引起的中断
{
TI = 0; //及时清除发送中断的标志,避免一直无缘无故的进入中断。
Gu8SendByteFinish=1; //从0变成1通知主函数已经发送完一个字节的数据了。
}
}
void UsartSendByteData(unsigned char u8SendData) //发送一个字节的底层驱动函数
{
static unsigned int Su16TimeOutDelay; //超时处理的延时计时器
Gu8SendByteFinish=0; //在发送一个字节之前,必须先把此全局变量的标志清零。
SBUF =u8SendData; //依靠寄存器SBUF作为载体发送一个字节的数据
Su16TimeOutDelay=0xffff; //超时处理的延时计时器装载一个相对合理的计时初始值
while(Su16TimeOutDelay>0) //超时处理
{
if(1==Gu8SendByteFinish)
{
break; //如果Gu8SendByteFinish为1,则发送一个字节完成,退出当前循环等待。
}
Su16TimeOutDelay--; //超时计时器不断递减
}
//Delay();//在实际应用中,当连续发送一堆数据时如果发现丢失数据,可以尝试在此增加延时
}
【133.2 发送任意起始位置任意长度的函数。】
要连续发送一堆数据,必须先把这堆数据封装成一个数组,然后编写一个发送数组的函数。该函数内部是基于“发送单字节的最小接口函数”来实现的。该函数对外通常需要两个接口,一个是数组的任意起始位置,一个发送的数据长度。数组的任意起始位置只需靠指针即可实现。片段的讲解代码如下:
//任意数组
unsigned char Gu8SendBuffer\[11\]={0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A};
//发送任意起始位置任意长度的函数
void UsartSendBuffer(const unsigned char \*pCu8SendBuffer,unsigned long u32SendSize)
{
static unsigned long i;
for(i=0;i<u32SendSize;i++) //u32SendSize为发送的数据长度
{
UsartSendByteData(pCu8SendBuffer\[i\]); //基于“发送单字节的最小接口函数”来实现的
}
}
void main()
{
UsartSendBuffer((const unsigned char \*)&Gu8SendBuffer\[0\],5);//从第0位置发送5个数据
UsartSendBuffer((const unsigned char \*)&Gu8SendBuffer\[6\],5);//从第6位置发送5个数据
while(1)
{
}
}
【133.3 发送带协议的函数。】
前面章节中,我们讲过接收“带固定协议”的程序框架,这类“带固定协议”的数据串里本身就自带了“数据的长度”,因此,要编程一个发送带协议的函数,关键在于,在函数内部根据协议先提取整串数据的有效长度。该函数对外通常也需要两个接口,一个是数组的起始位置,一个发送数据的最大限制长度。最大限制长度的作用是用来防止数组越界,增强程序的安全性。片段的讲解代码如下:
//“固定协议”十六进制的数据格式:EB 01 00 00 00 0B 03 E8 00 01 0B 。其中:
// EB是数据头。
// 01是代表数据类型。
// 00 00 00 0B代表数据长度是11个(十进制)。
// 03 E8 00 01 0B代表其它数据
//“带固定协议”的数组
unsigned char Gu8SendMessage\[11\]={0xEB,0x01,0x00,0x00,0x00,0x0B,0x03,0xE8,0x00,0x01,0x0B};
//发送带协议的函数
void UsartSendMessage(const unsigned char \*pCu8SendMessage,unsigned long u32SendMaxSize)
{
static unsigned long i;
static unsigned long \*pSu32;
static unsigned long u32SendSize;
pSu32=(const unsigned long \*)&pCu8SendMessage\[2\];
u32SendSize=\*pSu32; //从带协议的数组中提取整包数组的有效发送长度
if(u32SendSize>u32SendMaxSize) //如果“有效发送长度”大于“最大限制的长度”,数据异常
{
return; //数据异常,直接退出当前函数,预防数组越界
}
for(i=0;i<u32SendSize;i++) //u32SendSize为发送的数据长度
{
UsartSendByteData(pCu8SendMessage\[i\]); //基于“发送单字节的最小接口函数”来实现的
}
}
void main()
{
UsartSendMessage((const unsigned char \*)&Gu8SendMessage\[0\],100); //必须从第0位置发送
while(1)
{
}
}
【133.4 程序例程。】
![](https://img.kancloud.cn/57/01/57010762abae4157797b57319514eff1_468x181.png)
上图133.4.1 232串口电路
程序功能如下:
单片机上电瞬间,直接发送三串数据。
第一串是十六进制的任意数据:00 01 02 03 04
第二串是十六进制的任意数据:06 07 08 09 0A
第三串是十六进制的“带协议”数据:EB 01 00 00 00 0B 03 E8 00 01 0B
波特率9600,校验位NONE(无),数据位8,停止位1。在电脑的串口助手软件里,设置接收显示的为“十六进制”(HEX模式),即可观察到发送的三串数据。
代码如下:
\#include "REG52.H"
void UsartSendByteData(unsigned char u8SendData); //发送一个字节的底层驱动函数
//发送任意起始位置任意长度的函数
void UsartSendBuffer(const unsigned char \*pCu8SendBuffer,unsigned long u32SendSize);
//发送带协议的函数
void UsartSendMessage(const unsigned char \*pCu8SendMessage,unsigned long u32SendMaxSize);
void usart(void); //串口接收的中断函数
void SystemInitial(void);
void Delay(unsigned long u32DelayTime);
void PeripheralInitial(void);
unsigned char Gu8ReceData;
unsigned char Gu8SendByteFinish=0; //发送一个字节完成的标志
//任意数组
unsigned char Gu8SendBuffer\[11\]={0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A};
//“固定协议”十六进制的数据格式:EB 01 00 00 00 0B 03 E8 00 01 0B 。其中:
// EB是数据头。
// 01是代表数据类型。
// 00 00 00 0B代表数据长度是11个(十进制)。
// 03 E8 00 01 0B代表其它数据
//“带固定协议”的数组
unsigned char Gu8SendMessage\[11\]={0xEB,0x01,0x00,0x00,0x00,0x0B,0x03,0xE8,0x00,0x01,0x0B};
void main()
{
SystemInitial();
Delay(10000);
PeripheralInitial(); //在此函数内部调用了发送的三串数据
while(1)
{
}
}
void usart(void) interrupt 4 //串口的中断函数
{
if(1==RI)
{
RI = 0;
Gu8ReceData=SBUF;
}
else //发送数据引起的中断
{
TI = 0; //及时清除发送中断的标志,避免一直无缘无故的进入中断。
Gu8SendByteFinish=1; //从0变成1通知主函数已经发送完一个字节的数据了。
}
}
void UsartSendByteData(unsigned char u8SendData) //发送一个字节的底层驱动函数
{
static unsigned int Su16TimeOutDelay; //超时处理的延时计时器
Gu8SendByteFinish=0; //在发送以字节之前,必须先把此全局变量的标志清零。
SBUF =u8SendData; //依靠寄存器SBUF作为载体发送一个字节的数据
Su16TimeOutDelay=0xffff; //超时处理的延时计时器装载一个相对合理的计时初始值
while(Su16TimeOutDelay>0) //超时处理
{
if(1==Gu8SendByteFinish)
{
break; //如果Gu8SendByteFinish为1,则发送一个字节完成,退出当前循环等待。
}
Su16TimeOutDelay--; //超时计时器不断递减
}
//Delay();//在实际应用中,当连续发送一堆数据时如果发现丢失数据,可以尝试在此增加延时
}
//发送任意起始位置任意长度的函数
void UsartSendBuffer(const unsigned char \*pCu8SendBuffer,unsigned long u32SendSize)
{
static unsigned long i;
for(i=0;i<u32SendSize;i++) //u32SendSize为发送的数据长度
{
UsartSendByteData(pCu8SendBuffer\[i\]); //基于“发送单字节的最小接口函数”来实现的
}
}
//发送带协议的函数
void UsartSendMessage(const unsigned char \*pCu8SendMessage,unsigned long u32SendMaxSize)
{
static unsigned long i;
static unsigned long \*pSu32;
static unsigned long u32SendSize;
pSu32=(const unsigned long \*)&pCu8SendMessage\[2\];
u32SendSize=\*pSu32; //从带协议的数组中提取整包数组的有效发送长度
if(u32SendSize>u32SendMaxSize) //如果“有效发送长度”大于“最大限制的长度”,数据异常
{
return; //数据异常,直接退出当前函数,预防数组越界
}
for(i=0;i<u32SendSize;i++) //u32SendSize为发送的数据长度
{
UsartSendByteData(pCu8SendMessage\[i\]); //基于“发送单字节的最小接口函数”来实现的
}
}
void SystemInitial(void)
{
unsigned char u8\_TMOD\_Temp=0;
//以下是定时器0的中断的配置
TMOD=0x01;
TH0=0xfc;
TL0=0x66;
EA=1;
ET0=1;
TR0=1;
//以下是串口接收中断的配置
//串口的波特率与内置的定时器1直接相关,因此配置此定时器1就等效于配置波特率。
u8\_TMOD\_Temp=0x20; //即将把定时器1设置为:工作方式2,初值自动重装的8位定时器。
TMOD=TMOD&0x0f; //此寄存器低4位是跟定时器0相关,高4位是跟定时器1相关。先清零定时器1。
TMOD=TMOD|u8\_TMOD\_Temp; //把高4位的定时器1填入0x2,低4位的定时器0保持不变。
TH1=256-(11059200L/12/32/9600); //波特率为9600。11059200代表晶振11.0592MHz,
TL1=256-(11059200L/12/32/9600); //L代表long的长类型数据。根据芯片手册提供的计算公式。
TR1=1; //开启定时器1
SM0=0;
SM1=1; //SM0与SM1的设置:选择10位异步通信,波特率根据定时器1可变
REN=1; //允许串口接收数据
//为了保证串口中断接收的数据不丢失,必须设置IP = 0x10,相当于把串口中断设置为最高优先级,
//这个时候,串口中断可以打断任何其他的中断服务函数实现嵌套,
IP =0x10; //把串口中断设置为最高优先级,必须的。
ES=1; //允许串口中断
EA=1; //允许总中断
}
void Delay(unsigned long u32DelayTime)
{
for(;u32DelayTime>0;u32DelayTime--);
}
void PeripheralInitial(void)
{
//发送任意数组
UsartSendBuffer((const unsigned char \*)&Gu8SendBuffer\[0\],5);//从第0位置发送5个数据
UsartSendBuffer((const unsigned char \*)&Gu8SendBuffer\[6\],5);//从第6位置发送5个数据
//发送带协议的数组
UsartSendMessage((const unsigned char \*)&Gu8SendMessage\[0\],100); //必须从第0位置发送
}
- 首页
- 第一节:我的价值观
- 第二节:初学者的疑惑
- 第三节:单片机最重要的一个特性
- 第四节:平台软件和编译器软件的简介
- 第五节:用Keil2软件关闭,新建,打开一个工程的操作流程
- 第六节:把.c源代码编译成.hex机器码的操作流程
- 第七节:本节预留
- 第八节:把.hex机器码程序烧录到单片机的操作流程
- 第九节:本节预留
- 第十节:程序从哪里开始,要到哪里去?
- 第十一节:一个在单片机上练习C语言的模板程序
- 第十二节:变量的定义和赋值
- 【TODO】第十三节:赋值语句的覆盖性
- 【TODO】第十四节:二进制与字节单位,以及常用三种变量的取值范围
- 【TODO】第十五节:二进制与十六进制
- 【TODO】第十六节:十进制与十六进制
- 【TODO】第十七节:加法运算的5种常用组合
- 【TODO】第十八节:连加、自加、自加简写、自加1
- 【TODO】第十九节:加法运算的溢出
- 【TODO】第二十节:隐藏中间变量为何物?
- 【TODO】第二十一节:减法运算的5种常用组合。
- 【TODO】第二十二节:连减、自减、自减简写、自减1
- 【TODO】第二十三节:减法溢出与假想借位
- 【TODO】第二十四节:借用unsigned long类型的中间变量可以减少溢出现象
- 【TODO】第二十五节:乘法运算中的5种常用组合
- 【TODO】第二十六节:连乘、自乘、自乘简写,溢出
- 【TODO】第二十七节:整除求商
- 【TODO】第二十八节:整除求余
- 【TODO】第二十九节:“先余后商”和“先商后余”提取数据某位,哪家强?
- 【TODO】第三十节:逻辑运算符的“与”运算
- 【TODO】第三十一节:逻辑运算符的“或”运算
- 【TODO】第三十二节:逻辑运算符的“异或”运算
- 【TODO】第三十三节:逻辑运算符的“按位取反”和“非”运算
- 【TODO】第三十四节:移位运算的左移
- 【TODO】第三十五节:移位运算的右移
- 【TODO】第三十六节:括号的强制功能---改变运算优先级
- 【TODO】第三十七节:单字节变量赋值给多字节变量的疑惑
- 【TODO】第三十八节:第二种解决“运算过程中意外溢出”的便捷方法
- 【TODO】第三十九节:if判断语句以及常量变量的真假判断
- 【TODO】第四十节:关系符的等于“==”和不等于“!=”
- 【TODO】第四十一节:关系符的大于“>”和大于等于“>=”
- 【TODO】第四十二节:关系符的小于“<”和小于等于“<=”
- 【TODO】第四十三节:关系符中的关系符:与“&&”,或“||”
- 【TODO】第四十四节:小括号改变判断优先级
- 【TODO】第四十五节: 组合判断if...else if...else
- 【TODO】第四十六节: 一维数组
- 【TODO】第四十七节: 二维数组
- 【TODO】第四十八节: while循环语句
- 【TODO】第四十九节: 循环语句do while和for
- 【TODO】第五十节: 循环体内的continue和break语句
- 【TODO】第五十一节: for和while的循环嵌套
- 【TODO】第五十二节: 支撑程序框架的switch语句
- 【TODO】第五十三节: 使用函数的三要素和执行顺序
- 【TODO】第五十四节: 从全局变量和局部变量中感悟“栈”为何物
- 【TODO】第五十五节: 函数的作用和四种常见书写类型
- 【TODO】第五十六节: return在函数中的作用以及四个容易被忽略的功能
- 【TODO】第五十七节: static的重要作用
- 【TODO】第五十八节: const(./book/或code)在定义数据时的作用
- 【TODO】第五十九节: 全局“一键替换”功能的#define
- 【TODO】第六十节: 指针在变量(./book/或常量)中的基础知识
- 【TODO】第六十一节: 指针的中转站作用,地址自加法,地址偏移法
- 【TODO】第六十二节: 指针,大小端,化整为零,化零为整
- 【TODO】第六十三节: 指针“化整为零”和“化零为整”的“灵活”应用
- 【TODO】第六十四节: 指针让函数具备了多个相当于return的输出口
- 【TODO】第六十五节: 指针作为数组在函数中的入口作用
- 【TODO】第六十六节: 指针作为数组在函数中的出口作用
- 【TODO】第六十七节: 指针作为数组在函数中既“入口”又“出口”的作用
- 【TODO】第六十八节: 为函数接口指针“定向”的const关键词
- 【TODO】第六十九节: 宏函数sizeof(./book/)
- 【TODO】第七十节: “万能数组”的结构体
- 【TODO】第七十一节: 结构体的内存和赋值
- 【TODO】第七十二节: 结构体的指针
- 【TODO】第七十三节: 结构体数据的传输存储和还原
- 【TODO】第七十四节: 结构体指针在函数接口处的频繁应用
- 【TODO】第七十五节: 指针的名义(例:一维指针操作二维数组)
- 【TODO】第七十六节: 二维数组的指针
- 【TODO】第七十七节: 指针唯一的“单向输出”通道return
- 【TODO】第七十八节: typedef和#define和enum
- 【TODO】第七十九节: 各种变量常量的命名规范
- 【TODO】第八十节: 单片机IO口驱动LED
- 【TODO】第八十一节: 时间和速度的起源(指令周期和晶振频率)
- 【TODO】第八十二节: Delay“阻塞”延时控制LED闪烁
- 【TODO】第八十三节: 累计主循环的“非阻塞”延时控制LED闪烁
- 【TODO】第八十四节: 中断与中断函数
- 【TODO】第八十五节: 定时中断的寄存器配置
- 【TODO】第八十六节: 定时中断的“非阻塞”延时控制LED闪烁
- 【TODO】第八十七节: 一个定时中断产生N个软件定时器
- 【TODO】第八十八节: 两大核心框架理论(四区一线,switch外加定时中断)
- 【TODO】第八十九节: 跑马灯的三种境界
- 【TODO】第九十节: 多任务并行处理两路跑马灯
- 【TODO】第九十一节: 蜂鸣器的“非阻塞”驱动
- 【TODO】第九十二节: 独立按键的四大要素(自锁,消抖,非阻塞,清零式滤波)
- 【TODO】第九十三节: 独立按键鼠标式的单击与双击
- 【TODO】第九十四节: 两个独立按键构成的组合按键
- 【TODO】第九十五节: 两个独立按键的“电脑键盘式”组合按键
- 【TODO】第九十六节: 独立按键“一键两用”的短按与长按
- 【TODO】第九十七节: 独立按键按住不松手的连续均匀触发
- 【TODO】第九十八节: 独立按键按住不松手的“先加速后匀速”的触发
- 【TODO】第九十九节: “行列扫描式”矩阵按键的单个触发(原始版)
- 【TODO】第一百节: “行列扫描式”矩阵按键的单个触发(优化版)
- 【TODO】第一百零一节: 矩阵按键鼠标式的单击与双击
- 【TODO】第一百零二节: 两个“任意行输入”矩阵按键的“有序”组合触发
- 【TODO】第一百零三节: 两个“任意行输入”矩阵按键的“无序”组合触发
- 【TODO】第一百零四节: 矩阵按键“一键两用”的短按与长按
- 【TODO】第一百零五节: 矩阵按键按住不松手的连续均匀触发
- 【TODO】第一百零六节: 矩阵按键按住不松手的“先加速后匀速”触发
- 【TODO】第一百零七节: 开关感应器的识别与软件滤波
- 【TODO】第一百零八节: 按键控制跑马灯的启动和暂停和停止
- 【TODO】第一百零九节: 按键控制跑马灯的方向
- 【TODO】第一百一十节: 按键控制跑马灯的速度
- 第一百一十一节: 工业自动化设备的开关信号的运动控制
- 【TODO】第一百一十二节: 数码管显示的基础知识
- 【TODO】第一百一十三节: 动态扫描的数码管显示数字
- 【TODO】第一百一十四节: 动态扫描的数码管显示小数点
- 【TODO】第一百一十五节: 按键控制数码管的秒表
- 【TODO】第一百一十六节: 按键控制数码管的倒计时
- 【TODO】第一百一十七节: 按键切换数码管窗口来设置参数
- 【TODO】第一百一十八节: 按键让某位数码管闪烁跳动来设置参数
- 【TODO】第一百一十九节: 一个完整的人机界面的程序框架的脉络
- 【TODO】第一百二十节: 按键切换窗口切换局部来设置参数
- 【TODO】第一百二十一节: 可调参数的数码管倒计时
- 【TODO】第一百二十二节: 利用定时中断做的“时分秒”数显时钟
- 【TODO】第一百二十三节: 一种能省去一个lock自锁变量的按键驱动程序
- 【TODO】第一百二十四节: 数显仪表盘显示“速度、方向、计数器”的跑马灯
- 【TODO】第一百二十五节: “双线”的肢体接触通信
- 【TODO】第一百二十六节: “单线”的肢体接触通信
- 【TODO】第一百二十七节: 单片机串口接收数据的机制
- 【TODO】第一百二十八节: 接收“固定协议”的串口程序框架
- 【TODO】第一百二十九节: 接收带“动态密匙”与“累加和”校验数据的串口程序框架
- 【TODO】第一百三十节: 接收带“动态密匙”与“异或”校验数据的串口程序框架
- 【TODO】第一百三十一节: 灵活切换各种不同大小“接收内存”的串口程序框架
- 【TODO】第一百三十二节:“转发、透传、多种协议并存”的双缓存串口程序框架
- 【TODO】第一百三十三节:常用的三种串口发送函数
- 【TODO】第一百三十四节:“应用层半双工”双机串口通讯的程序框架