【102.1 “异行输入”“同行输入”“有序”。】
![](https://img.kancloud.cn/89/70/8970513a066fe0726b2997dcb0329ce0_194x190.png)
上图102.1.1 有源蜂鸣器电路
![](https://img.kancloud.cn/68/91/6891d9a9e89ee7345b1505221de5c26b_252x282.png)
上图102.1.2 LED电路
![](https://img.kancloud.cn/c1/8a/c18ad9232965b2a0699e388df49ac7b9_341x221.png)
上图102.1.3 3\*3矩阵按键的电路
“任意行输入”是指能兼容“异行输入”与“同行输入”这两种按键状态。
何谓“异行输入”何谓“同行输入”?如上图矩阵按键,P2.2,P2.1,P2.0是输入行,P2.5,P2.4,P2.3是输出列。以S1按键为例,很明显,S2和S3都是属于S1的“同行输入”,都是属于P2.2的输入行。除了S2和S3以外,其它所有的按键都是S1的“异行输入”,比如S5按键就是S1的“异行输入”,因为S1是属于P2.2的输入行,而S5是属于P2.1的输入行。
何谓“有序”组合触发?就是两个按键的触发必须遵守“先后顺序”才能构成“组合触发”。比如,像电脑的复制快捷键(Ctrl+C),你必须先按住Ctrl再按住C此时“复制快捷键”才有效,如果你先按住C再按住Ctrl此时“复制快捷键”无效。
“异行输入”与“同行输入”,相比之下,“同行输入”更难更有代表性,如果把“同行输入”的程序写出来了,那么完全按“同行输入”的思路,就可以把“异行输入”的程序写出来。因此,只要把“同行输入”的程序写出来了,也就意味着“任意行输入”的程序也就实现了。本节以S1和S2的“同行输入”按键为例,S1是主键,类似复制快捷键的Ctrl键;S2是从键,类似复制快捷键的C键。要触发组合键(S1+S2),必须先按住S1再按S2才有效。功能如下:(1)S1每单击一次,LED要么从“灭”变成“亮”,要么从“亮”变成“灭”,在两种状态之间切换。(2)如果先按住S1再按S2,就认为构造了“有序”组合键,蜂鸣器发出“嘀”的一声。
\#include "REG52.H"
\#define KEY\_VOICE\_TIME 50
\#define KEY\_SHORT\_TIME 20
void T0\_time();
void SystemInitial(void) ;
void Delay(unsigned long u32DelayTime) ;
void PeripheralInitial(void) ;
void BeepOpen(void);
void BeepClose(void);
void LedOpen(void);
void LedClose(void);
void VoiceScan(void);
void KeyScan(void);
void SingleKeyTask(void);
void DoubleKeyTask(void);
sbit P3\_4=P3^4;
sbit P1\_4=P1^4;
sbit ROW\_INPUT1=P2^2; //第1行输入口。
sbit ROW\_INPUT2=P2^1; //第2行输入口。
sbit ROW\_INPUT3=P2^0; //第3行输入口。
sbit COLUMN\_OUTPUT1=P2^5; //第1列输出口。
sbit COLUMN\_OUTPUT2=P2^4; //第2列输出口。
sbit COLUMN\_OUTPUT3=P2^3; //第3列输出口。
volatile unsigned char vGu8BeepTimerFlag=0;
volatile unsigned int vGu16BeepTimerCnt=0;
unsigned char Gu8LedStatus=0;
volatile unsigned char vGu8SingleKeySec=0;
volatile unsigned char vGu8DoubleKeySec=0;
void main()
{
SystemInitial();
Delay(10000);
PeripheralInitial();
while(1)
{
SingleKeyTask();
DoubleKeyTask();
}
}
/\* 注释一:
\* 两个“任意行输入”矩阵按键“有序”触发的两个最关键地方:
\* (1)当S1按键被按下单击触发之后, “马上更新输出列的信号状态”,然后切换到后面的步骤。
\* (2)在后面的步骤里,进入到S1和S2两个按键的轮番循环监控之中,如果发现S1按键率先
\* 被松开了,就把步骤切换到开始的第一步,重新开始新一轮的按键扫描。
\* (3)按照这个模板,只需“更改不同的列输出,判断不同的行输入”,就可以实现“任意行输入”
\* 矩阵按键的“有序”组合触发。
\*/
void KeyScan(void) //此函数放在定时中断里每1ms扫描一次
{
static unsigned char Su8KeyLock=0;
static unsigned int Su16KeyCnt=0;
static unsigned char Su8KeyStep=1;
static unsigned char Su8ColumnRecord=0;
switch(Su8KeyStep)
{
case 1:
if(0==Su8ColumnRecord)
{
COLUMN\_OUTPUT1=0;
COLUMN\_OUTPUT2=1;
COLUMN\_OUTPUT3=1;
}
else if(1==Su8ColumnRecord)
{
COLUMN\_OUTPUT1=1;
COLUMN\_OUTPUT2=0;
COLUMN\_OUTPUT3=1;
}
else
{
COLUMN\_OUTPUT1=1;
COLUMN\_OUTPUT2=1;
COLUMN\_OUTPUT3=0;
}
Su16KeyCnt=0;
Su8KeyStep++;
break;
case 2: //等待列输出稳定,但不是去抖动延时
Su16KeyCnt++;
if(Su16KeyCnt>=2)
{
Su16KeyCnt=0;
Su8KeyStep++;
}
break;
case 3:
if(1==ROW\_INPUT1&&1==ROW\_INPUT2&&1==ROW\_INPUT3)
{
Su8KeyStep=1;
Su8KeyLock=0;
Su16KeyCnt=0;
Su8ColumnRecord++;
if(Su8ColumnRecord>=3)
{
Su8ColumnRecord=0;
}
}
else if(0==Su8KeyLock)
{
if(0==ROW\_INPUT1&&1==ROW\_INPUT2&&1==ROW\_INPUT3)
{
Su16KeyCnt++;
if(Su16KeyCnt>=KEY\_SHORT\_TIME)
{
Su8KeyLock=1;
if(0==Su8ColumnRecord)
{
vGu8SingleKeySec=1; //单击任务,触发1号键 对应S1键
//“马上更新输出列的信号状态”
COLUMN\_OUTPUT1=1;
COLUMN\_OUTPUT2=0; //列2也输出0,非常关键的代码!
COLUMN\_OUTPUT3=1;
Su16KeyCnt=0; //去抖动延时清零,为下一步计时做准备
Su8KeyStep++; //切换到下一步步骤
}
else if(1==Su8ColumnRecord)
{
vGu8SingleKeySec=2;
}
else if(2==Su8ColumnRecord)
{
vGu8SingleKeySec=3;
}
}
}
else if(1==ROW\_INPUT1&&0==ROW\_INPUT2&&1==ROW\_INPUT3)
{
Su16KeyCnt++;
if(Su16KeyCnt>=KEY\_SHORT\_TIME)
{
Su8KeyLock=1;
if(0==Su8ColumnRecord)
{
vGu8SingleKeySec=4;
}
else if(1==Su8ColumnRecord)
{
vGu8SingleKeySec=5;
}
else if(2==Su8ColumnRecord)
{
vGu8SingleKeySec=6;
}
}
}
else if(1==ROW\_INPUT1&&1==ROW\_INPUT2&&0==ROW\_INPUT3)
{
Su16KeyCnt++;
if(Su16KeyCnt>=KEY\_SHORT\_TIME)
{
Su8KeyLock=1;
if(0==Su8ColumnRecord)
{
vGu8SingleKeySec=7;
}
else if(1==Su8ColumnRecord)
{
vGu8SingleKeySec=8;
}
else if(2==Su8ColumnRecord)
{
vGu8SingleKeySec=9;
}
}
}
}
break;
case 4: //等待列输出稳定,但不是去抖动延时
Su16KeyCnt++;
if(Su16KeyCnt>=2)
{
Su16KeyCnt=0;
Su8KeyLock=0; //关键语句!自锁清零,为下一步自锁组合按键做准备
Su8KeyStep++;
}
break;
case 5: //判断S2按键
if(1==ROW\_INPUT1&&1==ROW\_INPUT2&&1==ROW\_INPUT3) //S2按键没有被按下
{
Su8KeyLock=0;
Su16KeyCnt=0;
//“马上更新输出列的信号状态”
COLUMN\_OUTPUT1=0; //列1输出0,非常关键的代码!
COLUMN\_OUTPUT2=1;
COLUMN\_OUTPUT3=1;
Su8KeyStep++; //切换到下一个步骤,监控S1是否率先已经松开
}
else if(0==Su8KeyLock)
{
if(0==ROW\_INPUT1&&1==ROW\_INPUT2&&1==ROW\_INPUT3) //S2按键被按下
{
Su16KeyCnt++;
if(Su16KeyCnt>=KEY\_SHORT\_TIME)
{
Su8KeyLock=1; //组合按键的自锁
vGu8DoubleKeySec=1; //触发组合按键(S1+S2)
}
}
}
break;
case 6: //等待列输出稳定,但不是去抖动延时
Su16KeyCnt++;
if(Su16KeyCnt>=2)
{
Su16KeyCnt=0;
Su8KeyLock=0; //关键语句!自锁清零,为下一步自锁组合按键做准备
Su8KeyStep++;
}
break;
case 7: //监控S1按键是否率先已经松开
if(1==ROW\_INPUT1&&1==ROW\_INPUT2&&1==ROW\_INPUT3)
{
Su16KeyCnt=0;
Su8KeyLock=0;
Su8KeyStep=1; //如果S1按键已经松开,返回到第一个运行步骤重新开始扫描
Su8ColumnRecord++;
if(Su8ColumnRecord>=3)
{
Su8ColumnRecord=0;
}
}
else
{
//“马上更新输出列的信号状态”
COLUMN\_OUTPUT1=1;
COLUMN\_OUTPUT2=0; //列2输出0,非常关键的代码!
COLUMN\_OUTPUT3=1;
Su8KeyStep=4; //如果S1按键没有松开,继续返回判断S2是否已按下
}
break;
}
}
void SingleKeyTask(void)
{
if(0==vGu8SingleKeySec)
{
return;
}
switch(vGu8SingleKeySec)
{
case 1: //S1按键的单击任务,更改LED灯的显示状态
if(0==Gu8LedStatus)
{
Gu8LedStatus=1;
LedOpen();
}
else
{
Gu8LedStatus=0;
LedClose();
}
vGu8SingleKeySec=0;
break;
default:
vGu8SingleKeySec=0;
break;
}
}
void DoubleKeyTask(void)
{
if(0==vGu8DoubleKeySec)
{
return;
}
switch(vGu8DoubleKeySec)
{
case 1: //S1与S2的组合按键触发,发出“嘀”一声
vGu8BeepTimerFlag=0;
vGu16BeepTimerCnt=KEY\_VOICE\_TIME;
vGu8BeepTimerFlag=1;
vGu8DoubleKeySec=0;
break;
}
}
void T0\_time() interrupt 1
{
VoiceScan();
KeyScan();
TH0=0xfc;
TL0=0x66;
}
void SystemInitial(void)
{
TMOD=0x01;
TH0=0xfc;
TL0=0x66;
EA=1;
ET0=1;
TR0=1;
}
void Delay(unsigned long u32DelayTime)
{
for(;u32DelayTime>0;u32DelayTime--);
}
void PeripheralInitial(void)
{
if(0==Gu8LedStatus)
{
LedClose();
}
else
{
LedOpen();
}
}
void BeepOpen(void)
{
P3\_4=0;
}
void BeepClose(void)
{
P3\_4=1;
}
void LedOpen(void)
{
P1\_4=0;
}
void LedClose(void)
{
P1\_4=1;
}
void VoiceScan(void)
{
static unsigned char Su8Lock=0;
if(1==vGu8BeepTimerFlag&&vGu16BeepTimerCnt>0)
{
if(0==Su8Lock)
{
Su8Lock=1;
BeepOpen();
}
else
{
vGu16BeepTimerCnt--;
if(0==vGu16BeepTimerCnt)
{
Su8Lock=0;
BeepClose();
}
}
}
}
- 首页
- 第一节:我的价值观
- 第二节:初学者的疑惑
- 第三节:单片机最重要的一个特性
- 第四节:平台软件和编译器软件的简介
- 第五节:用Keil2软件关闭,新建,打开一个工程的操作流程
- 第六节:把.c源代码编译成.hex机器码的操作流程
- 第七节:本节预留
- 第八节:把.hex机器码程序烧录到单片机的操作流程
- 第九节:本节预留
- 第十节:程序从哪里开始,要到哪里去?
- 第十一节:一个在单片机上练习C语言的模板程序
- 第十二节:变量的定义和赋值
- 【TODO】第十三节:赋值语句的覆盖性
- 【TODO】第十四节:二进制与字节单位,以及常用三种变量的取值范围
- 【TODO】第十五节:二进制与十六进制
- 【TODO】第十六节:十进制与十六进制
- 【TODO】第十七节:加法运算的5种常用组合
- 【TODO】第十八节:连加、自加、自加简写、自加1
- 【TODO】第十九节:加法运算的溢出
- 【TODO】第二十节:隐藏中间变量为何物?
- 【TODO】第二十一节:减法运算的5种常用组合。
- 【TODO】第二十二节:连减、自减、自减简写、自减1
- 【TODO】第二十三节:减法溢出与假想借位
- 【TODO】第二十四节:借用unsigned long类型的中间变量可以减少溢出现象
- 【TODO】第二十五节:乘法运算中的5种常用组合
- 【TODO】第二十六节:连乘、自乘、自乘简写,溢出
- 【TODO】第二十七节:整除求商
- 【TODO】第二十八节:整除求余
- 【TODO】第二十九节:“先余后商”和“先商后余”提取数据某位,哪家强?
- 【TODO】第三十节:逻辑运算符的“与”运算
- 【TODO】第三十一节:逻辑运算符的“或”运算
- 【TODO】第三十二节:逻辑运算符的“异或”运算
- 【TODO】第三十三节:逻辑运算符的“按位取反”和“非”运算
- 【TODO】第三十四节:移位运算的左移
- 【TODO】第三十五节:移位运算的右移
- 【TODO】第三十六节:括号的强制功能---改变运算优先级
- 【TODO】第三十七节:单字节变量赋值给多字节变量的疑惑
- 【TODO】第三十八节:第二种解决“运算过程中意外溢出”的便捷方法
- 【TODO】第三十九节:if判断语句以及常量变量的真假判断
- 【TODO】第四十节:关系符的等于“==”和不等于“!=”
- 【TODO】第四十一节:关系符的大于“>”和大于等于“>=”
- 【TODO】第四十二节:关系符的小于“<”和小于等于“<=”
- 【TODO】第四十三节:关系符中的关系符:与“&&”,或“||”
- 【TODO】第四十四节:小括号改变判断优先级
- 【TODO】第四十五节: 组合判断if...else if...else
- 【TODO】第四十六节: 一维数组
- 【TODO】第四十七节: 二维数组
- 【TODO】第四十八节: while循环语句
- 【TODO】第四十九节: 循环语句do while和for
- 【TODO】第五十节: 循环体内的continue和break语句
- 【TODO】第五十一节: for和while的循环嵌套
- 【TODO】第五十二节: 支撑程序框架的switch语句
- 【TODO】第五十三节: 使用函数的三要素和执行顺序
- 【TODO】第五十四节: 从全局变量和局部变量中感悟“栈”为何物
- 【TODO】第五十五节: 函数的作用和四种常见书写类型
- 【TODO】第五十六节: return在函数中的作用以及四个容易被忽略的功能
- 【TODO】第五十七节: static的重要作用
- 【TODO】第五十八节: const(./book/或code)在定义数据时的作用
- 【TODO】第五十九节: 全局“一键替换”功能的#define
- 【TODO】第六十节: 指针在变量(./book/或常量)中的基础知识
- 【TODO】第六十一节: 指针的中转站作用,地址自加法,地址偏移法
- 【TODO】第六十二节: 指针,大小端,化整为零,化零为整
- 【TODO】第六十三节: 指针“化整为零”和“化零为整”的“灵活”应用
- 【TODO】第六十四节: 指针让函数具备了多个相当于return的输出口
- 【TODO】第六十五节: 指针作为数组在函数中的入口作用
- 【TODO】第六十六节: 指针作为数组在函数中的出口作用
- 【TODO】第六十七节: 指针作为数组在函数中既“入口”又“出口”的作用
- 【TODO】第六十八节: 为函数接口指针“定向”的const关键词
- 【TODO】第六十九节: 宏函数sizeof(./book/)
- 【TODO】第七十节: “万能数组”的结构体
- 【TODO】第七十一节: 结构体的内存和赋值
- 【TODO】第七十二节: 结构体的指针
- 【TODO】第七十三节: 结构体数据的传输存储和还原
- 【TODO】第七十四节: 结构体指针在函数接口处的频繁应用
- 【TODO】第七十五节: 指针的名义(例:一维指针操作二维数组)
- 【TODO】第七十六节: 二维数组的指针
- 【TODO】第七十七节: 指针唯一的“单向输出”通道return
- 【TODO】第七十八节: typedef和#define和enum
- 【TODO】第七十九节: 各种变量常量的命名规范
- 【TODO】第八十节: 单片机IO口驱动LED
- 【TODO】第八十一节: 时间和速度的起源(指令周期和晶振频率)
- 【TODO】第八十二节: Delay“阻塞”延时控制LED闪烁
- 【TODO】第八十三节: 累计主循环的“非阻塞”延时控制LED闪烁
- 【TODO】第八十四节: 中断与中断函数
- 【TODO】第八十五节: 定时中断的寄存器配置
- 【TODO】第八十六节: 定时中断的“非阻塞”延时控制LED闪烁
- 【TODO】第八十七节: 一个定时中断产生N个软件定时器
- 【TODO】第八十八节: 两大核心框架理论(四区一线,switch外加定时中断)
- 【TODO】第八十九节: 跑马灯的三种境界
- 【TODO】第九十节: 多任务并行处理两路跑马灯
- 【TODO】第九十一节: 蜂鸣器的“非阻塞”驱动
- 【TODO】第九十二节: 独立按键的四大要素(自锁,消抖,非阻塞,清零式滤波)
- 【TODO】第九十三节: 独立按键鼠标式的单击与双击
- 【TODO】第九十四节: 两个独立按键构成的组合按键
- 【TODO】第九十五节: 两个独立按键的“电脑键盘式”组合按键
- 【TODO】第九十六节: 独立按键“一键两用”的短按与长按
- 【TODO】第九十七节: 独立按键按住不松手的连续均匀触发
- 【TODO】第九十八节: 独立按键按住不松手的“先加速后匀速”的触发
- 【TODO】第九十九节: “行列扫描式”矩阵按键的单个触发(原始版)
- 【TODO】第一百节: “行列扫描式”矩阵按键的单个触发(优化版)
- 【TODO】第一百零一节: 矩阵按键鼠标式的单击与双击
- 【TODO】第一百零二节: 两个“任意行输入”矩阵按键的“有序”组合触发
- 【TODO】第一百零三节: 两个“任意行输入”矩阵按键的“无序”组合触发
- 【TODO】第一百零四节: 矩阵按键“一键两用”的短按与长按
- 【TODO】第一百零五节: 矩阵按键按住不松手的连续均匀触发
- 【TODO】第一百零六节: 矩阵按键按住不松手的“先加速后匀速”触发
- 【TODO】第一百零七节: 开关感应器的识别与软件滤波
- 【TODO】第一百零八节: 按键控制跑马灯的启动和暂停和停止
- 【TODO】第一百零九节: 按键控制跑马灯的方向
- 【TODO】第一百一十节: 按键控制跑马灯的速度
- 第一百一十一节: 工业自动化设备的开关信号的运动控制
- 【TODO】第一百一十二节: 数码管显示的基础知识
- 【TODO】第一百一十三节: 动态扫描的数码管显示数字
- 【TODO】第一百一十四节: 动态扫描的数码管显示小数点
- 【TODO】第一百一十五节: 按键控制数码管的秒表
- 【TODO】第一百一十六节: 按键控制数码管的倒计时
- 【TODO】第一百一十七节: 按键切换数码管窗口来设置参数
- 【TODO】第一百一十八节: 按键让某位数码管闪烁跳动来设置参数
- 【TODO】第一百一十九节: 一个完整的人机界面的程序框架的脉络
- 【TODO】第一百二十节: 按键切换窗口切换局部来设置参数
- 【TODO】第一百二十一节: 可调参数的数码管倒计时
- 【TODO】第一百二十二节: 利用定时中断做的“时分秒”数显时钟
- 【TODO】第一百二十三节: 一种能省去一个lock自锁变量的按键驱动程序
- 【TODO】第一百二十四节: 数显仪表盘显示“速度、方向、计数器”的跑马灯
- 【TODO】第一百二十五节: “双线”的肢体接触通信
- 【TODO】第一百二十六节: “单线”的肢体接触通信
- 【TODO】第一百二十七节: 单片机串口接收数据的机制
- 【TODO】第一百二十八节: 接收“固定协议”的串口程序框架
- 【TODO】第一百二十九节: 接收带“动态密匙”与“累加和”校验数据的串口程序框架
- 【TODO】第一百三十节: 接收带“动态密匙”与“异或”校验数据的串口程序框架
- 【TODO】第一百三十一节: 灵活切换各种不同大小“接收内存”的串口程序框架
- 【TODO】第一百三十二节:“转发、透传、多种协议并存”的双缓存串口程序框架
- 【TODO】第一百三十三节:常用的三种串口发送函数
- 【TODO】第一百三十四节:“应用层半双工”双机串口通讯的程序框架