【76.1 二维数组指针的用途。】
前面章节讲了一维指针操作二维数组,本质是通过“类型强制转换”实现的,这种应用局限于某些特定的场合,毕竟一维有1个下标,二维有2个下标,一维和二维在队形感上是有明显差别的,强行用一维指针操作二维数组会破坏了代码原有的队形感,大多数的情况,还是用二维指针操作二维数组。
二维指针主要应用在两个方面,一方面是N个二维数组的“中转站”应用,另一方面是函数接口的应用。比如,当某项目有N个二维数组表格时,要通过某个变量来切换处理某个特定的表格,以便实现“N选一”的功能,此时,二维指针在这N个二维数组之间就起到中转站的作用。又,当某个函数接口想输入或者输出一个二维数组时,就必然要用到二维指针作为函数的接口参数。
【76.2 二维指针的“中转站”应用。】
举一个例子,有3个现有的二维数组,通过某个变量来选择切换,把某个二维数组的数据复制到指定的一个缓存数组中。
code unsigned char table\_1\[3\]\[3\]= //第1个现有的二维数组
{
{0x00,0x01,0x02},
{0x10,0x11,0x12},
{0x20,0x21,0x22},
};
code unsigned char table\_2\[3\]\[3\]= //第2个现有的二维数组
{
{0xA0,0xA1,0xA2},
{0xB0,0xB1,0xB2},
{0xC0,0xC1,0xC2},
};
code unsigned char table\_3\[3\]\[3\]= //第3个现有的二维数组
{
{0xD0,0xD1,0xD2},
{0xE0,0xE1,0xE2},
{0xF0,0xF1,0xF2},
};
unsigned char SaveBuffer\[3\]\[3\]; //指定的一个缓存数组
unsigned char TableSec; //选择变量
const unsigned char (\*pTable)\[3\]; //“中转站”的二维指针
unsigned char R,L; //复制数据时用到的for循环变量
void main()
{
TableSec=2; //选择第2个现有的二维数组
switch(TableSec) //根据选择变量来切换选择某个现有的二维数组
{
case 1: //选择第1个现有二维数组
pTable=table\_1; //二维指针pTable在这里关联指定的数组,起到中转站的作用。
break;
case 2: //选择第2个现有二维数组
pTable=table\_2; //二维指针pTable在这里关联指定的数组,起到中转站的作用。
break;
case 3: //选择第3个现有二维数组
pTable=table\_2; //二维指针pTable在这里关联指定的数组,起到中转站的作用。
break;
}
//通过二维指针pTable来复制数据到指定的缓存数组SaveBuffer
for(R=0;R<3;R++) //行循环
{
for(L=0;L<3;L++) //列循环
{
SaveBuffer\[R\]\[L\]=pTable\[R\]\[L\]; //这里能看到,二维指针维护了二维数组的队形感
}
}
while(1)
{
}
}
【76.3 二维指针在“函数接口”中的应用。】
把上述例子“复制过程”的代码封装成一个函数,实现的功能还是一样,有3个现有的二维数组,通过某个变量来选择切换,把某个二维数组的数据复制到指定的一个缓存数组中。
//函数声明
void CopyBuffer(const unsigned char (\*pTable)\[3\],unsigned char (\*pSaveBuffer)\[3\]);
code unsigned char table\_1\[3\]\[3\]= //第1个现有的二维数组
{
{0x00,0x01,0x02},
{0x10,0x11,0x12},
{0x20,0x21,0x22},
};
code unsigned char table\_2\[3\]\[3\]= //第2个现有的二维数组
{
{0xA0,0xA1,0xA2},
{0xB0,0xB1,0xB2},
{0xC0,0xC1,0xC2},
};
code unsigned char table\_3\[3\]\[3\]= //第3个现有的二维数组
{
{0xD0,0xD1,0xD2},
{0xE0,0xE1,0xE2},
{0xF0,0xF1,0xF2},
};
unsigned char SaveBuffer\[3\]\[3\]; //指定的一个缓存数组
unsigned char TableSec; //选择变量
//\*pTable是输入接口带const修饰,\*pSaveBuffer是输出结果的接口无const。
void CopyBuffer(const unsigned char (\*pTable)\[3\],unsigned char (\*pSaveBuffer)\[3\])
{
unsigned char R,L; //复制数据时用到的for循环变量
for(R=0;R<3;R++) //行循环
{
for(L=0;L<3;L++) //列循环
{
pSaveBuffer\[R\]\[L\]=pTable\[R\]\[L\]; //这里能看到,二维指针维护了二维数组的队形感
}
}
}
void main()
{
TableSec=2; //选择第2个现有的二维数组
switch(TableSec) //根据选择变量来切换选择某个现有的二维数组
{
case 1: //选择第1个现有二维数组
CopyBuffer(table\_1,SaveBuffer); //二维指针在这里分别体现了输入和输出接口作用
break;
case 2: //选择第2个现有二维数组
CopyBuffer(table\_2,SaveBuffer); //二维指针在这里分别体现了输入和输出接口作用
break;
case 3: //选择第3个现有二维数组
CopyBuffer(table\_3,SaveBuffer); //二维指针在这里分别体现了输入和输出接口作用
break;
}
while(1)
{
}
}
【76.4 二维指针“类型强制转换”的书写格式。】
unsigned char \*pu8,unsigned int \*pu16,unsigned int \*pu32这些指针的书写定义都是很有规则感的,相比之下,二维指针的定义显得缺乏规则感,比如定义的二维指针变量unsigned char (\*pTable)\[3\],不规则在哪?就在于二维指针的变量pTable嵌入到了括号中去,跟符号“\*”捆绑在一起,这时就会冒出一个问题,如果我要强制某个指针变量为二维指针怎么办?下面的例子已经给出了答案。
unsigned char table\[3\]\[3\]= //二维数组
{
{0xD0,0xD1,0xD2},
{0xE0,0xE1,0xE2},
{0xF0,0xF1,0xF2},
};
unsigned char (\*pTable)\[3\];
void main()
{
pTable=(unsigned char (\*)\[3\])table; //这里,强制类型转换用unsigned char (\*)\[3\]
}
总结:二维数组的强制类型转换用这种书写格式(unsigned char (\*)\[N\]),这里的N是代表实际项目中某数组的“列”数。
【76.5 例程练习和分析。】
现在编写一个练习程序。
/\*---C语言学习区域的开始。-----------------------------------------------\*/
void CopyBuffer(const unsigned char (\*pTable)\[3\],unsigned char (\*pSaveBuffer)\[3\]);
code unsigned char table\_1\[3\]\[3\]= //第1个现有的二维数组
{
{0x00,0x01,0x02},
{0x10,0x11,0x12},
{0x20,0x21,0x22},
};
code unsigned char table\_2\[3\]\[3\]= //第2个现有的二维数组
{
{0xA0,0xA1,0xA2},
{0xB0,0xB1,0xB2},
{0xC0,0xC1,0xC2},
};
code unsigned char table\_3\[3\]\[3\]= //第3个现有的二维数组
{
{0xD0,0xD1,0xD2},
{0xE0,0xE1,0xE2},
{0xF0,0xF1,0xF2},
};
unsigned char SaveBuffer\[3\]\[3\]; //指定的一个缓存数组
unsigned char TableSec; //选择变量
//\*pTable是输入接口带const修饰,\*pSaveBuffer是输出结果的接口无const。
void CopyBuffer(const unsigned char (\*pTable)\[3\],unsigned char (\*pSaveBuffer)\[3\])
{
unsigned char R,L; //复制数据时用到的for循环变量
for(R=0;R<3;R++) //行循环
{
for(L=0;L<3;L++) //列循环
{
pSaveBuffer\[R\]\[L\]=pTable\[R\]\[L\]; //这里能看到,二维指针维护了二维数组的队形感
}
}
}
void main() //主函数
{
TableSec=2; //选择第2个现有的二维数组
switch(TableSec) //根据选择变量来切换选择某个现有的二维数组
{
case 1: //选择第1个现有二维数组
CopyBuffer(table\_1,SaveBuffer); //二维指针在这里分别体现了输入和输出接口作用
break;
case 2: //选择第2个现有二维数组
CopyBuffer(table\_2,SaveBuffer); //二维指针在这里分别体现了输入和输出接口作用
break;
case 3: //选择第3个现有二维数组
CopyBuffer(table\_3,SaveBuffer); //二维指针在这里分别体现了输入和输出接口作用
break;
}
View(SaveBuffer\[0\]\[0\]); //在电脑端观察某个二维数组第0行数据第0个元素的内容
View(SaveBuffer\[0\]\[1\]); //在电脑端观察某个二维数组第0行数据第1个元素的内容
View(SaveBuffer\[0\]\[2\]); //在电脑端观察某个二维数组第0行数据第2个元素的内容
while(1)
{
}
}
/\*---C语言学习区域的结束。-----------------------------------------------\*/
在电脑串口助手软件上观察到的程序执行现象如下:
开始...
第1个数
十进制:160
十六进制:A0
二进制:10100000
第2个数
十进制:161
十六进制:A1
二进制:10100001
第3个数
十进制:162
十六进制:A2
二进制:10100010
分析:
SaveBuffer\[0\]\[0\]是十六进制的0xA0,提取了第2个二维数组的第0行第0个数据。
SaveBuffer\[0\]\[1\]是十六进制的0xA1,提取了第2个二维数组的第0行第1个数据。
SaveBuffer\[0\]\[2\]是十六进制的0xA2,提取了第2个二维数组的第0行第2个数据。
【76.6 如何在单片机上练习本章节C语言程序?】
直接复制前面章节中第十一节的模板程序,练习代码时只需要更改“C语言学习区域”的代码就可以了,其它部分的代码不要动。编译后,把程序下载进带串口的51学习板,通过电脑端的串口助手软件就可以观察到不同的变量数值,详细方法请看第十一节内容。
- 首页
- 第一节:我的价值观
- 第二节:初学者的疑惑
- 第三节:单片机最重要的一个特性
- 第四节:平台软件和编译器软件的简介
- 第五节:用Keil2软件关闭,新建,打开一个工程的操作流程
- 第六节:把.c源代码编译成.hex机器码的操作流程
- 第七节:本节预留
- 第八节:把.hex机器码程序烧录到单片机的操作流程
- 第九节:本节预留
- 第十节:程序从哪里开始,要到哪里去?
- 第十一节:一个在单片机上练习C语言的模板程序
- 第十二节:变量的定义和赋值
- 【TODO】第十三节:赋值语句的覆盖性
- 【TODO】第十四节:二进制与字节单位,以及常用三种变量的取值范围
- 【TODO】第十五节:二进制与十六进制
- 【TODO】第十六节:十进制与十六进制
- 【TODO】第十七节:加法运算的5种常用组合
- 【TODO】第十八节:连加、自加、自加简写、自加1
- 【TODO】第十九节:加法运算的溢出
- 【TODO】第二十节:隐藏中间变量为何物?
- 【TODO】第二十一节:减法运算的5种常用组合。
- 【TODO】第二十二节:连减、自减、自减简写、自减1
- 【TODO】第二十三节:减法溢出与假想借位
- 【TODO】第二十四节:借用unsigned long类型的中间变量可以减少溢出现象
- 【TODO】第二十五节:乘法运算中的5种常用组合
- 【TODO】第二十六节:连乘、自乘、自乘简写,溢出
- 【TODO】第二十七节:整除求商
- 【TODO】第二十八节:整除求余
- 【TODO】第二十九节:“先余后商”和“先商后余”提取数据某位,哪家强?
- 【TODO】第三十节:逻辑运算符的“与”运算
- 【TODO】第三十一节:逻辑运算符的“或”运算
- 【TODO】第三十二节:逻辑运算符的“异或”运算
- 【TODO】第三十三节:逻辑运算符的“按位取反”和“非”运算
- 【TODO】第三十四节:移位运算的左移
- 【TODO】第三十五节:移位运算的右移
- 【TODO】第三十六节:括号的强制功能---改变运算优先级
- 【TODO】第三十七节:单字节变量赋值给多字节变量的疑惑
- 【TODO】第三十八节:第二种解决“运算过程中意外溢出”的便捷方法
- 【TODO】第三十九节:if判断语句以及常量变量的真假判断
- 【TODO】第四十节:关系符的等于“==”和不等于“!=”
- 【TODO】第四十一节:关系符的大于“>”和大于等于“>=”
- 【TODO】第四十二节:关系符的小于“<”和小于等于“<=”
- 【TODO】第四十三节:关系符中的关系符:与“&&”,或“||”
- 【TODO】第四十四节:小括号改变判断优先级
- 【TODO】第四十五节: 组合判断if...else if...else
- 【TODO】第四十六节: 一维数组
- 【TODO】第四十七节: 二维数组
- 【TODO】第四十八节: while循环语句
- 【TODO】第四十九节: 循环语句do while和for
- 【TODO】第五十节: 循环体内的continue和break语句
- 【TODO】第五十一节: for和while的循环嵌套
- 【TODO】第五十二节: 支撑程序框架的switch语句
- 【TODO】第五十三节: 使用函数的三要素和执行顺序
- 【TODO】第五十四节: 从全局变量和局部变量中感悟“栈”为何物
- 【TODO】第五十五节: 函数的作用和四种常见书写类型
- 【TODO】第五十六节: return在函数中的作用以及四个容易被忽略的功能
- 【TODO】第五十七节: static的重要作用
- 【TODO】第五十八节: const(./book/或code)在定义数据时的作用
- 【TODO】第五十九节: 全局“一键替换”功能的#define
- 【TODO】第六十节: 指针在变量(./book/或常量)中的基础知识
- 【TODO】第六十一节: 指针的中转站作用,地址自加法,地址偏移法
- 【TODO】第六十二节: 指针,大小端,化整为零,化零为整
- 【TODO】第六十三节: 指针“化整为零”和“化零为整”的“灵活”应用
- 【TODO】第六十四节: 指针让函数具备了多个相当于return的输出口
- 【TODO】第六十五节: 指针作为数组在函数中的入口作用
- 【TODO】第六十六节: 指针作为数组在函数中的出口作用
- 【TODO】第六十七节: 指针作为数组在函数中既“入口”又“出口”的作用
- 【TODO】第六十八节: 为函数接口指针“定向”的const关键词
- 【TODO】第六十九节: 宏函数sizeof(./book/)
- 【TODO】第七十节: “万能数组”的结构体
- 【TODO】第七十一节: 结构体的内存和赋值
- 【TODO】第七十二节: 结构体的指针
- 【TODO】第七十三节: 结构体数据的传输存储和还原
- 【TODO】第七十四节: 结构体指针在函数接口处的频繁应用
- 【TODO】第七十五节: 指针的名义(例:一维指针操作二维数组)
- 【TODO】第七十六节: 二维数组的指针
- 【TODO】第七十七节: 指针唯一的“单向输出”通道return
- 【TODO】第七十八节: typedef和#define和enum
- 【TODO】第七十九节: 各种变量常量的命名规范
- 【TODO】第八十节: 单片机IO口驱动LED
- 【TODO】第八十一节: 时间和速度的起源(指令周期和晶振频率)
- 【TODO】第八十二节: Delay“阻塞”延时控制LED闪烁
- 【TODO】第八十三节: 累计主循环的“非阻塞”延时控制LED闪烁
- 【TODO】第八十四节: 中断与中断函数
- 【TODO】第八十五节: 定时中断的寄存器配置
- 【TODO】第八十六节: 定时中断的“非阻塞”延时控制LED闪烁
- 【TODO】第八十七节: 一个定时中断产生N个软件定时器
- 【TODO】第八十八节: 两大核心框架理论(四区一线,switch外加定时中断)
- 【TODO】第八十九节: 跑马灯的三种境界
- 【TODO】第九十节: 多任务并行处理两路跑马灯
- 【TODO】第九十一节: 蜂鸣器的“非阻塞”驱动
- 【TODO】第九十二节: 独立按键的四大要素(自锁,消抖,非阻塞,清零式滤波)
- 【TODO】第九十三节: 独立按键鼠标式的单击与双击
- 【TODO】第九十四节: 两个独立按键构成的组合按键
- 【TODO】第九十五节: 两个独立按键的“电脑键盘式”组合按键
- 【TODO】第九十六节: 独立按键“一键两用”的短按与长按
- 【TODO】第九十七节: 独立按键按住不松手的连续均匀触发
- 【TODO】第九十八节: 独立按键按住不松手的“先加速后匀速”的触发
- 【TODO】第九十九节: “行列扫描式”矩阵按键的单个触发(原始版)
- 【TODO】第一百节: “行列扫描式”矩阵按键的单个触发(优化版)
- 【TODO】第一百零一节: 矩阵按键鼠标式的单击与双击
- 【TODO】第一百零二节: 两个“任意行输入”矩阵按键的“有序”组合触发
- 【TODO】第一百零三节: 两个“任意行输入”矩阵按键的“无序”组合触发
- 【TODO】第一百零四节: 矩阵按键“一键两用”的短按与长按
- 【TODO】第一百零五节: 矩阵按键按住不松手的连续均匀触发
- 【TODO】第一百零六节: 矩阵按键按住不松手的“先加速后匀速”触发
- 【TODO】第一百零七节: 开关感应器的识别与软件滤波
- 【TODO】第一百零八节: 按键控制跑马灯的启动和暂停和停止
- 【TODO】第一百零九节: 按键控制跑马灯的方向
- 【TODO】第一百一十节: 按键控制跑马灯的速度
- 第一百一十一节: 工业自动化设备的开关信号的运动控制
- 【TODO】第一百一十二节: 数码管显示的基础知识
- 【TODO】第一百一十三节: 动态扫描的数码管显示数字
- 【TODO】第一百一十四节: 动态扫描的数码管显示小数点
- 【TODO】第一百一十五节: 按键控制数码管的秒表
- 【TODO】第一百一十六节: 按键控制数码管的倒计时
- 【TODO】第一百一十七节: 按键切换数码管窗口来设置参数
- 【TODO】第一百一十八节: 按键让某位数码管闪烁跳动来设置参数
- 【TODO】第一百一十九节: 一个完整的人机界面的程序框架的脉络
- 【TODO】第一百二十节: 按键切换窗口切换局部来设置参数
- 【TODO】第一百二十一节: 可调参数的数码管倒计时
- 【TODO】第一百二十二节: 利用定时中断做的“时分秒”数显时钟
- 【TODO】第一百二十三节: 一种能省去一个lock自锁变量的按键驱动程序
- 【TODO】第一百二十四节: 数显仪表盘显示“速度、方向、计数器”的跑马灯
- 【TODO】第一百二十五节: “双线”的肢体接触通信
- 【TODO】第一百二十六节: “单线”的肢体接触通信
- 【TODO】第一百二十七节: 单片机串口接收数据的机制
- 【TODO】第一百二十八节: 接收“固定协议”的串口程序框架
- 【TODO】第一百二十九节: 接收带“动态密匙”与“累加和”校验数据的串口程序框架
- 【TODO】第一百三十节: 接收带“动态密匙”与“异或”校验数据的串口程序框架
- 【TODO】第一百三十一节: 灵活切换各种不同大小“接收内存”的串口程序框架
- 【TODO】第一百三十二节:“转发、透传、多种协议并存”的双缓存串口程序框架
- 【TODO】第一百三十三节:常用的三种串口发送函数
- 【TODO】第一百三十四节:“应用层半双工”双机串口通讯的程序框架